ПРОЦЕСС ПРЕВРАЩЕНИЯ ПУЧКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ПОЛОСУ

ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Кочетков Виктор Николаевич

ViktKochetkov@yandex.ru vnkochetkov@gmail.com

vnkochetkov@rambler.ru

http://www.matphysics.ru

В статье на примере перегруппирования отдельных элементов,

составляющих узконаправленный пучок монохроматического светового

излучения, показывается возможность превращения (разложения) этого

светового пучка в полосу светового излучения при его отражении от

движущейся зеркальной поверхности. В связи с возможным отличием

значений диэлектрической и магнитной проницаемостей в среде величины

скоростей распространения светового излучения пучка и полосы могут

иметь различные значения.

PACS number: 03.30.+p

Содержание

1. Введение (2).

2. Основные определения (2).

3. Превращение пучка светового излучения в полосу светового

излучения (3).

4. Фазовые скорости перемещения волновых поверхностей световых

излучений в виде пучка 0 и в виде любого из минипучков $1_1, 1_2, 1_3, \ldots, 1_n$

полосы 1 (11).

5. Заключение (12).

Список литературы (13).

1. Введение

Основываясь на положениях волновой оптики, в статье на примере перегруппирования отдельных элементов узконаправленного пучка монохроматического светового излучения при отражении этого пучка от зеркальной поверхности рассматривается процесс разложения электромагнитного излучения пучка на составляющие в виде полосы электромагнитного излучения.

При этом световое излучение пучка, двигающееся в пространстве последовательно вдоль одной линии, превращается в световое излучение, двигающееся параллельно узкой полосой под некоторым углом к этой полосе.

2. Основные определения

Для рассмотрения движения электромагнитной энергии с учетом работ [1], [2], [3], [4], [5] введем следующие определения:

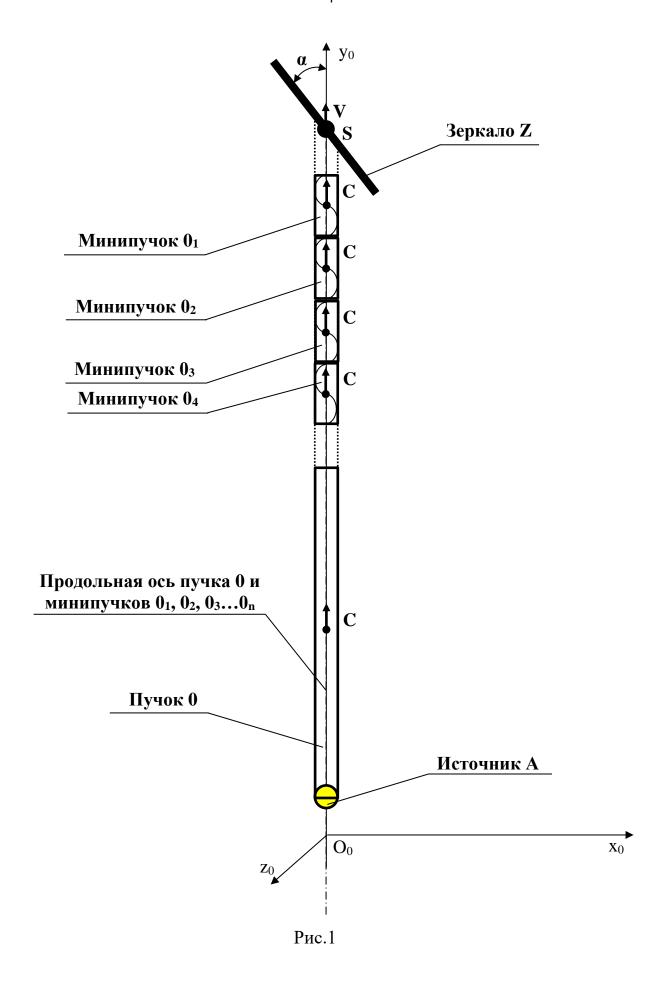
- волна распространение колебаний в пространстве, происходящее с конечной скоростью;
- волновая поверхность множество всех точек пространства, в которых фаза колебаний в данный момент времени имеет одно и то же значение;
- волновой фронт крайняя волновая поверхность, являющаяся границей между возмущённой и невозмущённой областями среды;
- передний волновой фронт множество всех точек пространства, которых достиг колебательный процесс в данный момент времени;
- задний волновой фронт множество всех точек пространства, в которых прекратился колебательный процесс в данный момент времени;
- длина пространства, охваченного колебательным процессом, расстояние между передним и задним волновым фронтом;
 - фазовая скорость скорость, с которой перемещается волновая

поверхность;

- когерентные волны волны, имеющие одинаковую частоту и постоянную во времени разность фаз;
- световые волны электромагнитные волны, обладающие всеми их свойствами;
- световой луч линия в пространстве, не имеющая размеров в поперечном сечении, и которая в каждой своей точке перпендикулярна волновой поверхности, проходящей через эту точку;
 - световой луч направлен в сторону переноса энергии световой волны,
 - совокупность световых лучей называется световым пучком,
- монохроматическая световая волна световая волна определенной частоты,
- зеркальная поверхность поверхность, размер неровностей которой меньше длины падающей на него световой волны.

3. Превращение пучка светового излучения в полосу светового излучения

С целью большей наглядности и упрощения рассмотрения примем нижеперечисленные предположения.


Предположения 1:

- пространство, внутри которого распространяется электромагнитная энергия, вакуум;
- электромагнитная энергия распространяется в пространстве в виде светового излучения.

Допустим, как показано на рис.1, что имеются источник ${\bf A}$ светового излучения и зеркало ${\bf Z}$.

Предположения 2:

- источник ${\bf A}$ неподвижен в инерциальной системе отсчета ${\bf O}_0{\bf x}_0{\bf y}_0{\bf z}_0$,

- источник ${\bf A}$ является источником монохроматическое светового излучения,
- излучаемая источником ${\bf A}$ световая энергия движется в пространстве с фазовой скоростью ${\bf C}$ однонаправленно вдоль оси ${\bf y}_0$ в виде узконаправленного пучка ${\bf 0}$,
- пучок ${f 0}$ имеет минимально возможное поперечное сечение в виде круга с диаметром ${f d}_0$,
- световое излучение источника ${\bf A}$ в виде пучка ${\bf 0}$ происходит в течении интервала времени ${\bf \Delta T_0},$
- пучок **0** имеет длину \mathbf{L}_0 (длина пространства, охваченного колебательным процессом),
- световая энергия, излученная источником A в виде пучка 0 в течении интервала времени ΔT_0 , заключена в пространстве, которое условно можно представить в виде цилиндра, движущегося со скоростью C, и имеющего диаметр d_0 и длину L_0 ;
- продольная ось пучка 0 светового излучения всегда находится в плоскости $\mathbf{O}_0\mathbf{x}_0\mathbf{y}_0$ и совпадает с осью \mathbf{y}_0 ,
- длина L_0 несоизмерима больше длины λ_0 световой волны, излучаемой источником A;
- площадь волнового фронта пучка 0 (порядка $\pi d_0^2/4$) несоизмеримо мала по сравнению с площадью боковой поверхности пучка 0 (порядка $\pi d_0 L_0$).

Учитывая то, что длина L_0 несоизмерима больше длины λ_0 световой волны, излучаемой источником A, в поперечном направлении пучок 0 можно представить, как большой пучок, состоящий из маленьких световых пучков - минипучков 0_1 , 0_2 , 0_3 , ..., 0_n , световая энергия в которых движется из источника A последовательно и поступательно с постоянной фазовой скоростью C однонаправленно вдоль оси y_0 .

То есть пучок $\mathbf{0}$ световой энергии без изменения своих физический свойств может быть разделен в продольном направлении на отдельные

составляющие элементы - минипучки 0_1 , 0_2 , 0_3 , ..., 0_n , которые могут существовать в рассматриваемом пространстве самостоятельно.

Предположения 3:

- все минипучки $0_1, 0_2, 0_3, ..., 0_n$ одинаковы и не отличаются друг от друга;
- световая энергия минипучков $0_1, 0_2, 0_3, ..., 0_n$, излучаемая источником A, движется из источника A последовательно один за другим, начиная с минипучка 0_1 , поступательно с постоянной фазовой скоростью C, однонаправленной вдоль оси y_0 ;
- продольные оси всех минипучков $\mathbf{0}_1,\ \mathbf{0}_2,\ \mathbf{0}_3,\ \dots,\ \mathbf{0}_n$ будут всегда находиться на одной линии с продольной осью пучка $\mathbf{0}_i$;
- поперечное сечение каждого из минипучков $\mathbf{0}_1,\ \mathbf{0}_2,\ \mathbf{0}_3,\ \dots,\ \mathbf{0}_n$ круг с диаметром \mathbf{d}_0 ;
- световое излучение источника **A** в виде любого из минипучков $\mathbf{0}_1, \mathbf{0}_2, \mathbf{0}_3,$..., $\mathbf{0}_n$ происходит в течении интервала времени $\Delta \mathbf{t}_0$;
- каждый из минипучков $\mathbf{0}_1,\ \mathbf{0}_2,\ \mathbf{0}_3,\ \dots,\ \mathbf{0}_n$ имеет длину \mathbf{l}_0 (длина пространства, охваченного колебательным процессом);
- световая энергия, излученная источником A в виде любого из минипучков $0_1, 0_2, 0_3, ..., 0_n$ в течении интервала времени Δt_0 , заключена в пространстве, которое условно можно представить в виде цилиндра, движущегося со скоростью C, и имеющего диаметр d_0 и длину l_0 ;
- длина \mathbf{l}_0 не может быть меньше длины λ_0 световой волны, излучаемой источником \mathbf{A} ;
- площадь волнового фронта каждого из минипучков 0_1 , 0_2 , 0_3 , ..., 0_n составляет порядка $\pi d_0^2/4$ и может быть соизмерима с площадью его боковой поверхности, составляющей порядка $\pi d_0 l_0$.

Как показано на рис.1, световое излучение источника \mathbf{A} в виде пучка $\mathbf{0}$ (или в виде минипучков $\mathbf{0}_1$, $\mathbf{0}_2$, $\mathbf{0}_3$, ..., $\mathbf{0}_n$ последовательно) попадает на отражающую поверхность зеркала \mathbf{Z} .

Предположения 4:

- отражающая поверхность зеркала **Z** является плоской,
- отражающая поверхность зеркала ${\bf Z}$ постоянно перпендикулярна плоскости ${\bf O_0x_0y_0},$
- отражающая поверхность зеркала ${\bf Z}$ постоянно находится под углом ${\bf \alpha}$ к оси ${\bf y}_0,$
- световое излучение источника ${\bf A}$ в виде пучка ${\bf 0}$ попадает на зеркало ${\bf Z}$ в районе точки ${\bf S}$ ее отражающей поверхности,
- центр источника \mathbf{A} , точка \mathbf{S} зеркала \mathbf{Z} и продольная ось пучка $\mathbf{0}$ (и продольные оси минипучков $\mathbf{0}_1,\ \mathbf{0}_2,\ \mathbf{0}_3,\ ...,\ \mathbf{0}_n$) находятся на одной линии, совпадающей с осью \mathbf{y}_0 ;
- в инерциальной системе отсчета $O_0 \mathbf{x}_0 \mathbf{y}_0 \mathbf{z}_0$ зеркало \mathbf{Z} движется поступательно в направлении от источника \mathbf{A} со постоянной скоростью \mathbf{V} , вектор которой параллелен оси \mathbf{y}_0 или совпадает с ней;
- отражение световой энергии пучка $\mathbf{0}$ (и минипучков $\mathbf{0}_1, \mathbf{0}_2, \mathbf{0}_3, ..., \mathbf{0}_n$) от зеркала \mathbf{Z} является полным.

В связи с тем, что зеркало ${\bf Z}$ движется со скоростью ${\bf V}$ и отражающая поверхность зеркала ${\bf Z}$ находится под углом ${\bf \alpha}$ к линии, по которой движется световая энергия пучка ${\bf 0}$, пучок ${\bf 0}$ не может отразиться от поверхности зеркала ${\bf Z}$ без структурных изменений, заключающихся в том, что от поверхности зеркала ${\bf Z}$ каждый из минипучков ${\bf 0}_1, {\bf 0}_2, {\bf 0}_3, ..., {\bf 0}_n$, составляющих единое целое в виде пучка ${\bf 0}$, отражается в отдельности последовательно.

Минипучки 0_1 , 0_2 , 0_3 , ..., 0_n после отражения от зеркала $\mathbf Z$ последовательно превращаются в минипучки $\mathbf 1_1$, $\mathbf 1_2$, $\mathbf 1_3$, ..., $\mathbf 1_n$ соответственно.

То есть, как показано на рис.2, под воздействием отражающей поверхности зеркала ${\bf Z}$ световой пучок ${\bf 0}$ разлагается на световые минипучки ${\bf 1}_1, {\bf 1}_2, {\bf 1}_3, ..., {\bf 1}_n.$

В инерциальной системе отсчета $O_0x_0y_0z_0$ о минипучках $\mathbf{1}_1,\,\mathbf{1}_2,\,\mathbf{1}_3,\,...,\,\mathbf{1}_n$ можно сказать следующее:

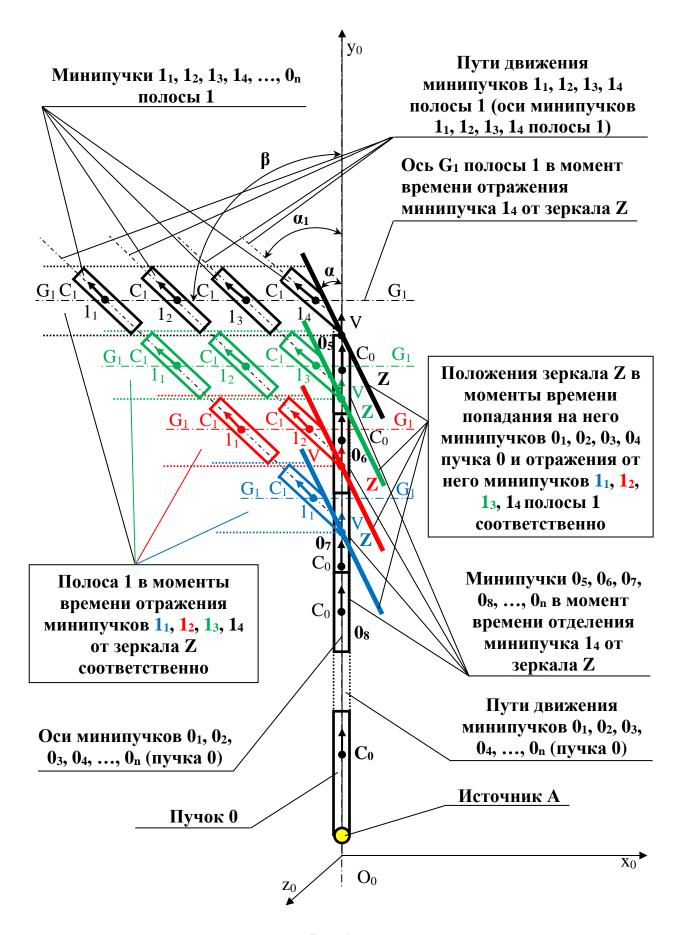


Рис.2

- все минипучки $\mathbf{1}_1, \mathbf{1}_2, \mathbf{1}_3, ..., \mathbf{1}_n$ одинаковы и не отличаются друг от друга, так как принято, что все минипучки $\mathbf{0}_1, \mathbf{0}_2, \mathbf{0}_3, ..., \mathbf{0}_n$ одинаковы;
- световые энергии минипучков 1_1 , 1_2 , 1_3 , ..., 1_n движутся от точки S зеркала Z последовательно поступательно параллельно друг другу, с постоянной фазовой скоростью C_1 , вектор которой составляет с осью y_0 угол α_1 и однонаправлен по оси y_0 ;
 - угол α_1 зависит от величин угла α и скорости V,
- продольные оси всех минипучков $\mathbf{1}_1,\ \mathbf{1}_2,\ \mathbf{1}_3,\ ...,\ \mathbf{1}_n$ будут всегда параллельны друг другу и будут находиться под углом α_1 к оси \mathbf{y}_0 ;
- поперечное сечение каждого из минипучков $\mathbf{1}_1,\ \mathbf{1}_2,\ \mathbf{1}_3,\ ...,\ \mathbf{1}_n$ круг с диаметром \mathbf{d}_1 ;
- световое излучение, отраженное от зеркала ${\bf Z}$, в виде любого из минипучков ${\bf 1}_1,\,{\bf 1}_2,\,{\bf 1}_3,\,\ldots,\,{\bf 1}_n$ происходит в течении интервала времени $\Delta t_1,$
- расстояние между продольными осями минипучков $\mathbf{1}_1,\ \mathbf{1}_2,\ \mathbf{1}_3,\ ...,\ \mathbf{1}_n$ зависит от величин угла α , скорости V и интервала времени Δt_1 ;
- каждый из минипучков \mathbf{l}_1 , \mathbf{l}_2 , \mathbf{l}_3 , ..., \mathbf{l}_n имеет длину \mathbf{l}_1 (длина пространства, охваченного колебательным процессом),
- по аналогии с минипучками 0_1 , 0_2 , 0_3 , ..., 0_n световая энергия, отраженная от зеркала \mathbf{Z} , в виде любого из минипучков $\mathbf{1}_1$, $\mathbf{1}_2$, $\mathbf{1}_3$, ..., $\mathbf{1}_n$ в течении интервала времени Δt_1 , заключена в пространстве, которое условно можно представить в виде цилиндра, движущегося со скоростью \mathbf{C}_1 , и имеющего диаметр \mathbf{d}_1 и длину \mathbf{l}_1 ;
- длина \mathbf{l}_1 не может быть меньше длины λ_1 световой волны, отраженной от зеркала \mathbf{Z} ;
- площадь волнового фронта каждого из минипучков $\mathbf{1}_1, \, \mathbf{1}_2, \, \mathbf{1}_3, \, ..., \, \mathbf{1}_n$ составляет порядка $\pi d_1^2/4$ и может быть соизмерима с площадью его боковой поверхности, составляющей порядка $\pi d_1 \mathbf{l}_1$;
- передний и задний волновой фронт и волновые поверхности каждого из минипучков $\mathbf{1}_1, \, \mathbf{1}_2, \, \mathbf{1}_3, \, ..., \, \mathbf{1}_n$ будут иметь размер порядка \mathbf{d}_1 и перемещаются

поступательно с постоянной скоростью C_1 , вектор которой составляет с оси y_0 угол α_1 и однонаправлен по оси y_0 ;

- центры всех минипучков $\mathbf{1}_1,\,\mathbf{1}_2,\,\mathbf{1}_3,\,\ldots,\,\mathbf{1}_n$ в любой момент времени будут находиться на одной линии \mathbf{G}_1 , составляющей угол $\boldsymbol{\beta}$ с осью \mathbf{y}_0 ;

В инерциальной системе отсчета $O_0x_0y_0z_0$ все минипучки $\mathbf{1}_1,\ \mathbf{1}_2,\ \mathbf{1}_3,\ ...,\ \mathbf{1}_n$ после зеркала \mathbf{Z} движутся, как единое целое в виде полосы $\mathbf{1}$.

То есть после зеркала \mathbf{Z} световая энергия, излученная источником \mathbf{A} , будет двигаться в пространстве с постоянной скоростью \mathbf{C}_1 , вектор которой составляет угол α_1 с оси \mathbf{y}_0 и однонаправлен по оси \mathbf{y}_0 , в виде полосы $\mathbf{1}$.

В инерциальной системе отсчета $O_0 x_0 y_0 z_0$ о полосе 1, можно сказать следующее:

- полоса ${\bf 1}$ представляет из себя узкий параллелепипед с длиной ${\bf L}_1$, шириной ${\bf l}_1$ и продольной осью в виде линии ${\bf G}_1$,
 - полоса ${\bf 1}$ имеет длину, равную ${\bf L}_1$ (от минипучка ${\bf 1}_1$ до зеркала ${\bf Z}$);
 - величина длины L_1 полосы 1 зависит от величины длины L_0 пучка 0,
- ширину \mathbf{l}_1 полосы $\mathbf{1}$ (как и у минипучков $\mathbf{l}_1,\ \mathbf{l}_2,\ \mathbf{l}_3,\ ...,\ \mathbf{l}_n)$ длина пространства, охваченного колебательным процессом;
- продольная ось G_1 полосы 1 будет всегда находится под углом β к оси y_0 ,
- расстояние между передним и задним волновыми фронтами полосы 1 порядка $l_1 \sin(\beta \alpha_1)$,
 - толщина полосы 1 порядка d_1 ,
- продольные оси всех минипучков $\mathbf{1}_1,\ \mathbf{1}_2,\ \mathbf{1}_3,\ ...,\ \mathbf{1}_n$ будут постоянно находятся под углом $(\boldsymbol{\beta}-\boldsymbol{\alpha}_1)$ к продольной оси \mathbf{G}_1 полосы $\mathbf{1}$;
- центры всех минипучков $\mathbf{1}_1,\,\mathbf{1}_2,\,\mathbf{1}_3,\,\ldots,\,\mathbf{1}_n$ в любой момент времени будут находиться на одной линии, совпадающей с продольной осью \mathbf{G}_1 полосы $\mathbf{1}$;
- волновой фронт, все волновые поверхности полосы ${\bf 1}$ все время параллельны продольной оси ${\bf G_1}$;
 - направление движения световой энергии минипучков $\mathbf{1}_1,\,\mathbf{1}_2,\,\mathbf{1}_3,\,...,\,\mathbf{1}_n$ не

перпендикулярно плоскости волнового фронта и всем волновым поверхностям полосы 1, а находится к ним под углом ($\beta - \alpha_1$);

- внутри полосы 1 одновременно каждый из минипучков $1_1, 1_2, 1_3, ..., 1_n$ движется поступательно в направлении от зеркала $\mathbf Z$ с постоянной скоростью $\mathbf C_1$, вектор которой составляет угол α_1 с оси $\mathbf y_0$;
- волновой фронт и все волновые поверхности полосы 1 одновременно перемещаются поступательно с постоянной скоростью $C_1 \sin(\beta \alpha_1)$ и смещаются параллельно себе (касательно своей плоскости) со скоростью $C_1 \cos(\beta \alpha_1)$ в направлении от зеркала Z.

Отличие пучка 0 от полосы 1 заключается в том, что минипучки 0_1 , 0_2 , 0_3 , ..., 0_n , составляющие пучок 0, находятся последовательно на одной линии, а минипучки 1_1 , 1_2 , 1_3 , ..., 1_n , составляющие полосу 1, находятся параллельно друг другу.

В итоге можно сказать, что под воздействием движущегося зеркала ${\bf Z}$ световая энергия пучка ${\bf 0}$ разложилась на световые энергии минипучков ${\bf 1}_1,\,{\bf 1}_2,\,{\bf 1}_3,\,\dots,\,{\bf 1}_n$ полосы ${\bf 1}$.

Причем возможен обратный процесс, превращения световых энергий минипучков $\mathbf{1}_1,\,\mathbf{1}_2,\,\mathbf{1}_3,\,...,\,\mathbf{1}_n$ полосы $\mathbf{1}$ в световую энергия пучка, аналогичного пучку $\mathbf{0}$.

Световое излучение в виде полосы также может быть получено и без зеркала ${\bf Z}$ при движении источника ${\bf A}$ под некоторым углом к направлению, излучаемой им световой энергии.

4. Фазовые скорости перемещения волновых поверхностей световых излучений в виде пучка 0 и в виде любого из минипучков $1_1, 1_2, 1_3, ..., 1_n$ полосы 1

Переменное электромагнитное поле распространяется в пространстве в виде волн, фазовая скорость $\mathbf{v_f}$ [2] которых равна:

$$\mathbf{v_f} = \frac{\mathbf{c}}{\sqrt{\epsilon \mu}} \tag{1}$$

Где:

- ${f c}$ скорость движения электромагнитных волн в вакууме (скорость света в вакууме),
- Е безразмерная относительная диэлектрическая проницаемость среды,
 характеризующая ее электрические свойства и показывающая во сколько раз
 электрическое поле в среде изменяется по сравнению с электрическим полем
 в вакууме;

В вакууме $\varepsilon = \mu = 1$.

В начале рассмотрения было сделано предположение о том, что световые энергии в пучке $\bf 0$ и полосе $\bf 1$ движутся в вакууме.

Исходя из этого предположения, можно отметить, что:

- фазовая скорость волны С в пучке 0 будет равна:

$$\mathbf{C} = \mathbf{c} \tag{2}$$

- фазовая скорость волны C_1 в любом из минипучков $\mathbf{1}_1,\ \mathbf{1}_2,\ \mathbf{1}_3,\ ...,\ \mathbf{1}_n$ полосы $\mathbf{1}$ будет равна:

$$\mathbf{C_1} = \frac{\mathbf{c}}{\sqrt{\varepsilon \mu}} \tag{3}$$

Так как пучок 0 — одиночный, а минипучки 1_1 , 1_2 , 1_3 , ..., 1_n , расположенные параллельно в полосе 1, будут находиться под взаимным влиянием, которое может изменить электрические и магнитные свойства окружающей среды.

В итоге получается, что фазовая скорость волны C в пучке 0 и фазовая скорость волны C_1 в любом из минипучков 1_1 , 1_2 , 1_3 , ..., 1_n полосы 1 не обязательно должны иметь одинаковые значения.

5. Заключение

В статье на примере перегруппирования отдельных элементов узконаправленного пучка монохроматического светового излучения при отражении этого пучка от зеркальной поверхности был рассмотрен процесс разложения электромагнитного излучения пучка на составляющие в виде полосы электромагнитного излучения.

Было показано, что:

- световое излучение пучка, двигающееся в пространстве последовательно вдоль одной линии, может быть превращено в световое излучение, двигающееся параллельно узкой полосой под некоторым углом к этой полосе;
- фазовые скорости световых волн в пучке и полосе могут иметь разные значения даже в вакууме.

Процесс превращения пучка светового излучения в полосу светового излучения может быть использован для оценки результатов экспериментов Майкельсона-Морли.

Список литературы

- 1. Борн М., Вольф Э. Основы оптики (2-е издание). М.: Наука, 1973.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Том 3. Волновые процессы. Оптика. Атомная и ядерная физика (3-е издание). М.: Высшая школа, 1979.
 - 3. Савельев И.В. Курс общей физики, том 3. Оптика. Атомная физика. М.: Наука, 1971.
- 4. Путилов К.А., Фабрикант В.А. Курс физики. Том 3. Оптика. Атомная физика. Ядерная физика (2-е издание). М.: ГИФМЛ, 1963.
 - 5. Матвеев А.Н. Оптика, М.: Высшая школа, 1985.

Автор В.Н. Кочетков