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Introduction

In this selection you can find the papers, presented either by P.A. Zhilin or by his
co-authors at the APM Summer-School Conference in the period from 1994 to 2005.
The book is issued in two volumes: the first one contains articles in Russian, the second
one contains articles in English. In both volumes the articles are listed in chronological
order. The range of questions discussed is wide. It includes fundamental laws of mechan-
ics, direct tensor calculus, rigid body dynamics, nonlinear rod theory, general theory of
non-linear media, including plasticity, consolidating granular media, phase transitions,
as well as piezoelectricity, ferromagnetism, electrodynamics and quantum mechanics. At
first sight it seems that the papers are not related one to another. But this is not so. Let
us show a few examples. Rigid body oscillator, introduced in the article related to the
absolute rigid body dynamics, is used further as fundamental model when constructing
inelastic media theory, piezoelectricity theory, and theory of magnetoelastic materials.
Methods of description of the spinor motion, based on use of the direct tensor calculus,
are used and developed both for solving rigid body dynamics problems and for solving
nonlinear rod theory problems. The same methods are used when constructing various
continuum models, which take into account rotational degrees of freedom. The symmetry
theory and tensor invariant theory, which are presented in the book, dedicated to this
topic, are being actively used and developed when constructing rod theory, as well as for
other continuum theories. Two papers are dedicated to the formulation of fundamental
laws of the Eulerian mechanics — mechanics of a general body, consisting of particles with
rotational degrees of freedom. All continuum theories, presented in the digest, including
electrodynamics, are built adhering to the same positions based on the fundamental laws
of mechanics. When building continuum models both for elastic and inelastic media,
the theory of strains is used, which is based on the idea of using the reduced energy
balance equation for defining measures of deformation. By the elementary examples of
discrete systems mechanics the notions of internal energy, chemical potential, temper-
ature and entropy are introduced. Definition of these quantities is given by means of
pure mechanical arguments, which are based on using special mathematical formulation
of energy balance equation. The same method of introducing the basic thermodynamics
notions indicated above is used when building different continuum theories. In fact the
selected papers of P.A. Zhilin represent the method for constructing continuum theories
with rotational degrees of freedom together with the necessary mathematical apparatus,
as well as examples of using the mentioned theories when describing different physical
phenomena. Among others, the first volume of the digest includes two papers, dedicated
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to the fundamental laws of mechanics, which were written with big time interval, and
two articles on the rod theory, which were also written in the different periods of time.
The Reader can take advantage of following the development of scientific ideas. The
first paper dedicated to the fundamental laws of mechanics, is a quite perfect, logically
rigorous theory. Nevertheless, after many years, author returns to this topic. The aim
was not to change something in the original variant, but to complete it by including in
it thermodynamical ideas. The mentioned above can equally be pertained to the two
papers on the rod theory. Not every physical theory permits including of new notions
in it. Often, when needed to describe a new phenomenon, one is forced to reject an old
theory and build a new one instead. The theories presented in this selection have an
ability to be developed. This is their great advantage, and that is one of the important
reasons why they attract attention of researchers.

The editorial board is grateful to N.A. Zhilina for help with preparing this book for
publication; to S.N. Gavrilov, E.F. Grekova, I.I. Neygebauer, and E.V. Shishkina for
translation to English of the introductional parts and the list of publications.

D.A. Indeitsev, E.A. Ivanova, A.M. Krivtsov.
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P. A. Zhilin — searching for Truth

“There is no action without reason in nature;
comprehend the reason and you won’t need the experience.”

Leonardo da Vinci

The most significant features of scientific society in the end of XX — beginning of
XXI century are pragmatism and particular specialization. To the least degree this can
be applied to Pavel Andreevich Zhilin. Sincere interest, willing to perceive the Truth
and to bring his knowledge to people were the solely motives for his work. Breadth
of scientific interests of P.A. Zhilin is impressing — having fundamental character, his
works cover practically all areas of mechanics and are extended to electrodynamics and
quantum physics. Hardly anyone can express the views of P.A. Zhilin on science better
than himself:

“Aim of each science is in perception of the Reality. At the same time the science
investigates not the Reality itself, but the simplified models of the Reality. Approaching
to the true Reality can be achieved by broadening the model. But to construct a model
we need to know at least, what exactly we are going to model. In other words we have to
have an a priori idea of the Reality. So we have a vicious circle — to perceive the Reality
we need a science, and to construct a science we need to know the Reality. Fortunately
the solution of this one would think unsolvable problem is integrated in the human mind,
which has two qualitatively different categories: a) intuition and b) intellect.

Intuition is the ability of a human being to sense the world around us directly, which
can not be reduced to the five basic senses. This is what poets, musicians, painters and
other artists are conscious of. Intuition may be trained as well as every other ability of
human being, but it requires permanent and purposeful efforts.

Intellect is an ability of human being to think logically, basing on an a priori knowl-
edge, “built in” the intellect “memory”. A powerful modern computer is a practically
perfect analogue of intellect.”

From the paper “Reality and Mechanics”
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Doctor of Science, professor, author of more than 200 scientific papers, many of
which were published in the key scientific journals, a Teacher who educated more than
one generation of disciples — both PhD and Dr. Sci, P.A. Zhilin was a mind of a wide
scope and of great erudition.

Being by his position an adherent of the rigorous Science, he was also deeply interested
in Eastern philosophies. Fundamental scientific ideas of Pavel Andreevich, concerning
the importance of spinor motions when describing events at the micro-level and modelling
the electromagnetic field, are in correspondence with different metaphysical concepts of
the origin of the World. These ideas in various forms were proposed by the great classics
of science, whose works Pavel Andreevich studied in a deep and detailed way. The
achievement of Pavel Andreevich is the translation of these ideas from a vague general
form of words and intuitive assumptions into a rigourous form of mathematical models.
The things he writes on intuitive perception of the world around us is based not only on
books, but on his own experience of direct perception of scientific knowledge:

“It is principally possible to use intuitive and intellectual methods of perception inde-
pendently one of another. Intuitive perception has an imperfection of being impossible to
teach it. However namely the intuitive method underlies the creation of scientific models.
Pure intellectual approach can make semblance of scientific discoveries, but in fact it’s
fruitless. In the last decades special popularity was gained by the so called “black box”
philosophy, which refers to the intellectual method achievement. It seemed that this way
could bring us to success. But in actual fact it turned out that the black box is worth
only when it is transparent, that is when we know its inside beforehand. The merit of the
intellectual method is that it can be taught easily.

Let us characterize the intellectual method with the words of Einstein: “Science is a
creation of human mind with its freely invented ideas and notions”.

Intuitive method of cognition is best defined by the words of Socratus: By intuitive
perception “soul is climbing up the highest observation tower of Being”.

The main thesis of this work is that no real development of science is possible with-
out immediate participation of intuition and there are neither freely invented ideas nor
notions existing in nature..”

From the paper “Reality and Mechanics”

Having administrative positions of the head of the Chair of Theoretical Mechanics at
the Saint Petersburg Polytechnical University, head of laboratory “Mechanical systems
dynamics” at the Institute for Problems in Mechanical Engineering Russian Academy
of Sciences, taking active part in the life of society — being member of the Russian
National Committee for Theoretical and Applied Mechanics, member of International
Society of Applied Mathematics and Mechanics (GAMM), member of Guidance Board
Presidium for Applied Mechanics Ministry of Higher Education RF, full member of Rus-
sian Academy of Sciences for durability problems, member of three Dissertation Councils,
first of all P.A. Zhilin was a Scientist, for whom the science has become the sense of life
and the cause of life. He was a Teacher who influenced not only his immediate disciples —
PhD students and persons working for doctor’s degree, but also many people considering
themselves his disciples to a greater or lesser extent.

P.A. Zhilin considered one of his main tasks broadening the range of application for
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mechanics and describing phenomena, being studied in the different fields of natural
science from common rational positions, peculiar to mechanics. The following quotation
expresses the views of P.A. Zhilin on mechanics as a method of studying nature and on
the role mechanics should play in the science of XXI century:

“Mechanics is not a theory of whatever Phenomenon, but a method of investigation
of nature. There is no law in the foundations of mechanics, which could be disproved
experimentally, not even in principle. In the foundation of mechanics there are logical
statements which express balance conditions for certain quantities, and per se they are
insufficient for the construction of any closed theory. One has to attract supplementary
laws, like the law of gravity, regarded as facts experimentally determined. These sup-
plementary laws may come out to be insufficient or even erroneous, but rejecting them
does not influence methods of mechanics. The mentioned nonclosure of mechanics may
be considered as its loss by people who think that the humanity is close to the final un-
derstanding of the universe. But those who are able to see the Reality, understand how
infinitely far people are from ability to describe even relatively simple phenomena of the
Reality. That is why the correct method of studying nature is to include a priori in-
definite elements, manipulating by which one could improve these or those theories of
phenomena of various nature and in that way broaden our idea of Reality. Mechanics
sets certain limits for the acceptable structure of these indefinite elements, but preserves
a wide enough freedom for them.”

From the paper “Reality and Mechanics”

One of the most important results of the scientific and educational work of P.A. Zhilin
is his book of about 1000 pages, which was published only partly during his life. The
book represents a course of the Eulerian mechanics, which takes into account on equal
terms both translational and rotational degrees of freedom. In this book P.A. Zhilin
shares with the reader his ideas related to the taking into consideration spinor motions
on the micro-level, application of open bodies models, and introduction of the character-
istics of physical state (temperature, entropy, chemical potential) by methods of rational
mechanics.

P.A. Zhilin dreamed to open a way to the microworld for the rational mechanics, and
to include there the electrodynamics. Many people dream and many people issue big
challenges for themselves, but only few of them succeed. P.A. Zhilin knew to make his
dreams a reality. Within the limits of classical mechanics he offered continuum models,
whose mathematical description is coming to electrodynamics and quantum mechanics
equations. Views of P.A. Zhilin often disagree with the common point of view, his ideas
are raising debates, but

“Who argues, appealing to an authority, uses not his brain, but rather his memory.”

Leonardo da Vinci

D.A. Indeitsev, E.A. Ivanova, A.M. Krivtsov
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Short biography and scientific results of

P. A. Zhilin∗

Pavel Andreevich Zhilin was the Head of the Department of Theoretical Mechan-
ics at Saint Petersburg Polytechnical University, Head of the laboratory “Dynamics of
Mechanical Systems” at the Institute for Problems in Mechanical Engineering of Rus-
sian Academy of Sciences, member of the Russian National Committee for Theoretical
and Applied Mechanics, member of the International Society of Applied Mathematics
and Mechanics (GAMM), member of Guidance Board Presidium for Applied Mechan-
ics Ministry of Higher Education RF, full member of Russian Academy of Sciences for
Strength Problems. He was an author of more than 200 scientific papers, monographs
“Second-rank Vectors and Tensors in 3-dimentional space” (2001), “Theoretical mechan-
ics: fundamental laws of mechanics” (2003). Sixteen PhD theses and six Professorial
theses were defended under his supervision.

P.A. Zhilin was born on February 8th, 1942, in the town of Velikiy Ustyug in Vologda
region, where his family found themselves during the war. Pavel Zhilin spent his child-
hood in the towns of Volkhov and Podporozhie, where his father, Andrey Pavlovich
Zhilin, worked. Andrey P. Zhilin was a power engineering specialist, and at that time
the chief engineer at the coordinated hydroelectric system of Svir river. Zoya Alexeevna
Zhilina, mother of Pavel A. Zhilin, was bringing up the sons and kept the house. In 1956
Andrey P. Zhilin was assigned to the position of the chief power engineering specialist
at the Soviet Union Trust “HydroElectroMontage”, and the family moved to Leningrad.
The elder brother, Sergey Andreevich Zhilin, followed in his father’s footsteps, became
an engineer and now participates in creating high-voltage electric apparatus. In 1959
P.A. Zhilin left the secondary school and entered Leningrad Polytechnical Institute. Yet
at school Pavel Zhilin met his future wife, Nina Alexandrovna, who was his faithful
friend and helpmate all his life long. While studying at the institute P.A. Zhilin became
keen on table tennis and was a captain of the student and later institute team for many
years. Not once did the team win different student and sport collectives championships.
P.A. Zhilin got a qualification of the candidate master of sports (the highest qualification
in this sport discipline at that time).

In the period of 1959–1965 P.A. Zhilin studied at Leningrad Polytechnical Institute

∗The editorial board is grateful to N.A. Zhilina for the biografic data of P.A. Zhilin. In the survey of
scientific results we used, when it was possible, the original text of manuscipts and articles by P.A. Zhilin.
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in the Department of “Mechanics and Control Processes” at the Faculty of Physics and
Mechanics. Later on his daughter, Olga Zhilina, graduated from the same Department.
After graduation, P.A. Zhilin got a qualification of engineer-physicist in “Dynamics and
Strength of Machines” speciality, and from 1965 to 1967 worked as an engineer at water
turbine strength department in the Central Boiler Turbine Institute. In 1967 he ac-
cepted a position of Assistant Professor at the Department of “Mechanics and Control
Processes”, later he worked there as a senior researcher, an Associate Professor and a Full
Professor. The founder of the Chair was Anatoliy Isaakovich Lurie, Doctor of Technical
Sciences, Professor, corresponding member of USSR Academy of Sciences, world-famous
scientist. P.A. Zhilin became the closest disciple of A.I. Lurie and spent many hours
working together with him. Scientific ideology of P.A. Zhilin was developing to a great
extent under the influence of A.I. Lurie. P.A. Zhilin got his PhD degree in Physical and
Mathematical Sciences in 1968 (the topic of his thesis was “The theory of ribbed shells”),
Professor of Physical and Mathematical Sciences since 1984 (the topic of his Professorial
thesis was “The theory of simple shells and its applications”), Professor at the Depart-
ment of “Mechanics and Control Processes” since 1989. In 1974–1975 P.A. Zhilin worked
as a visiting researcher at the Technical University of Denmark. While working in the
Department of “Mechanics and Control Processes”, P.A. Zhilin delivered lectures on an-
alytical mechanics, theory of oscillations, theory of shells, tensor analysis, continuum
mechanics. In 1988 he was invited in the Yarmuk University (Jordan) to set a course of
continuum mechanics at the Faculty of Physics. At the same time P.A. Zhilin actively
carried out scientific work in the field of theory of plates and shells, nonlinear rod theory,
theory of elasticity, continuum mechanics. He gained three certificates of invention in
the area of vibroinsulation and hydroacoustics, he was awarded with the Inventor of the
USSR insignia.

Since 1989 P.A. Zhilin was the Head of Department of Theoretical Mechanics. In the
period of his direction five of his colleagues defended their Professorial theses, for the
four of them P.A. Zhilin was a scientific advisor. While working in the Department of
Theoretical Mechanics P.A. Zhilin stationed and read original courses on tensor algebra,
rational mechanics, and the rod theory. During this period of time Pavel Zhilin worked
hard in the field of investigating and developing foundations of mechanics. His investiga-
tions on spinor motions in mechanics and physics, phase transitions and phenomena of
inelasticity, electrodynamics from the positions of rational mechanics, logical foundations
of mechanics relate to this period. Since 1994 Pavel Zhilin was the Head of “Dynamics of
Mechanical Systems” laboratory at the Institute for Problems in Mechanical Engineering
of Russian Academy of Sciences. Since 1999 he was a member of the scientific commit-
tee of the Annual International Summer School – Conference “Advanced Problems in
Mechanics”, held by the Institute for Problems in Mechanical Engineering.

Pavel Andreevich Zhilin died on 4th of December, 2005. His track has become a
part of history of science. It is difficult to overestimate his influence on his disciples,
colleagues, and all who were lucky to know him personally. He had an extraordinary
ability to inspire interest to science, to give you a fresh unexpected look at the world
around. P.A. Zhilin was a man of heart, a responsive, kind person, who found time for
everyone, always giving his full support and benefit of his wise advice. One was amazed
by his remarkable human qualities, his absolute scientific and human honesty. Being his
disciples we are grateful to life for the chance to have known such a wonderful person
and an outstanding scientist, who became for us an embodiment of spirituality.
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Scientific results

Theory of shells

Zhilin’s early works, Ph.D. and Professor theses were devoted to the development of the
theory of shells. When Zhilin started his research in this area, there existed no general
theory of shells. For each class of shell-type constructions there were developed particular
independent theories: the theory of thin single-layer shells; the theory of engineering
anisotropic shells; the theory of ribbed shells; the theory of thin multi-layer shells; the
theory of perforated shells; the theory of cellular shells; the theory of thick single-layer
shells, and many others. Within each theory one could distinguish several versions,
which differed in basic assumptions as well as in final equations. The theories of shells
are still being developed since the science gives birth to new constructions that can not be
described within the existing variety of theories. Zhilin created (1975–1984) the general
nonlinear theory of thermoelastic shells, whose way of construction fundamentally differs
from the one of all known versions of shell theories, and can be easily generalised for
any shell-like constructions and other objects of continuum mechanics. This approach is
comprehensively described in work [1].

1. Zhilin P.A. Applied mechanics. Foundations of theory of shells. Tutorial book. St.
Petersburg State Polytechnical University. 2006. 167 p. (In Russian).

Discretely stiffened thermoelastic shells

The general theory of discretely stiffened thermoelastic shells was developed (1965–1970)
[1, 3] and applied to the following practical problems: the calculation of the high-pressure
water turbine scroll of Nurek hydropower station [2] and of the vacuum chamber of the
thermonuclear Tokamak 20 Panel [4].

There was proposed (1966) a variant of the Steklov-Fubini method for differential equa-
tions, whose coefficients have singularities of δ-function type. The method allowed to
find the solution in an explicit form for the problem of axisymmetric deformation of a
discretely stiffened cylindrical shell [5].

1. Zhilin P.A. General theory of ribbed shells // Trudi CKTI (Transactions of Central
Boiler Turbine Institute). 1968. No. 88. Pp. 46–70. (In Russian.)

2. Zhilin P.A., Mikheev V.I. Toroidal shell with meridional ribs for design of hydro-
turbine spirals. // Trudi CKTI (Transactions of Central Boiler Turbine Institute).
1968. No. 88. Pp. 91–99. (In Russian.)

3. Zhilin P.A. Linear theory of ribbed shells // Izvestiya AN SSSR, Mekhanika tver-
dogo tela (Transactions of the Academy of Sciences of the USSR, Mechanics of
Solids). 1970. No. 4. Pp. 150–162. (In Russian.)

4. Zhilin P.A., Konyushevskaya R.M., Palmov V.A., Chvartatsky R.V. On design
of the stress-strain state of discharge chambers of Tokamak Panels. Leningrad,
NIIEFA (Research Institute of Electro-physical apparatuses), P-OM-0550. 1982.
Pp. 1–13. (In Russian.)
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5. Zhilin P.A. Axisymmetric deformation of a cylindrical shell, supported by frames
// Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the Academy of
Sciences of the USSR, Mechanics of Solids). 1966, No. 5, pp. 139–142. (In Russian.)

A new formulation for the second law of thermodynamics for the case of thin
surfaces

A new formulation for the second law of thermodynamics was proposed (1973) [1–4]
by means of the combination of two Clausius–Duhem–Truesdell type inequalities. This
formulation deals with a thin surface, each side of which has its own temperature and
entropy. So, the formulation contains two entropies, two internal temperature fields, and
two external temperature fields. Apart from the theory of shells this elaboration of the
second law of thermodynamics is also useful for the solid-state physics when studying the
influence of skin effects on properties of solids, as well as for the description of interfaces
between different phases of a solid.

1. Zhilin P.A. Mechanics of Deformable Surfaces. The Danish Center for Appl. Math
and Mech. Report N 89. 1975. P. 1–29.

2. Zhilin P.A. Mechanics of Deformable Cosserat Surfaces and Shell Theory. The
Danish Center for Appl. Math and Mech. Annual report. 1975.

3. Zhilin P.A. Mechanics of deformable enriched surfaces // Transactions of the 9th
Soviet conference on the theory of shells and plates. Leningrad, Sudostroenie. 1975.
Pp. 48–54. (In Russian.)

4. Zhilin P.A. Mechanics of Deformable Directed Surfaces // Int. J. Solids Structures.
1976. Vol. 12. P. 635–648.

Generalization of the classical theory of symmetry of tensors

An important addition is made (1977) to the tensor algebra, namely the concept of ori-
ented tensors, i.e. tensor objects which depend on orientation in both a three-dimensional
space, and in its subspaces. The theory of symmetry [1, 2] is formulated for oriented ten-
sors, and it generalises the classical theory of symmetry, which applies to the Euclidean
tensors only. It was shown that the application of the classical theory, for example, to
axial tensors, i.e. objects dependent on orientation in a 3D space, leads to wrong conclu-
sions. The proposed theory is needed to obtain the constitutive equations for shells and
other multipolar media, as well as when studying ionic crystals.

1. Zhilin P.A. General theory of constitutive equations in the linear theory of elas-
tic shells // Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the
Academy of Sciences of the USSR, Mechanics of Solids). 1978. No. 3. Pp. 190. (In
Russian.)

2. Zhilin P.A. Basic equations of non-classical theory of shells // Dinamika i prochnost
mashin (Dynamics and strength of machines.) Trudi LPI (Proceedings of Leningrad
Polytechical Institute.) N 386. 1982. . 29–46. (In Russian.)
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The general nonlinear theory of thermoelastic shells

The general nonlinear theory of thermoelastic shells is created (1975–1984). The way of
its construction fundamentally differs from all known versions of shell theories and can be
easily extended to any shell-like constructions and other objects of continuum mechanics.
Its key feature is that it allows studying shell-like objects of a complex internal structure,
i.e. when traditional methods of construction of the theory of shells are not applicable
[1–11]. For shells of constant thickness, made of isotropic material, the new method gives
results that are in accordance with those of the classical methods and perfectly coincide
with the results of three-dimensional elasticity theory for the case of any external forces,
including point loads.

1. Zhilin P.A. Two-dimensional continuum. Mathematical theory and physical inter-
pretations // Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the
Academy of Sciences of the USSR, Mechanics of Solids). 1972. N 6. Pp. 207–208.
(In Russian.)

2. Zhilin P.A. Modern handling of the theory of shells // Izvestiya AN SSSR,
Mekhanika tverdogo tela (Transactions of the Academy of Sciences of the USSR,
Mechanics of Solids). 1974. N 4. (In Russian.)

3. Zhilin P.A. Mechanics of Deformable Surfaces. The Danish Center for Appl. Math
and Mech. Report N 89. 1975. P. 1–29.

4. Zhilin P.A. Mechanics of Deformable Cosserat Surfaces and Shell Theory. The
Danish Center for Appl. Math and Mech. Annual report. 1975.

5. Zhilin P.A. Mechanics of deformable enriched surfaces // Transactions of the 9th
Soviet conference on the theory of shells and plates. Leningrad, Sudostroenie. 1975.
Pp. 48–54. (In Russian.)

6. Zhilin P.A. Mechanics of Deformable Directed Surfaces // Int. J. Solids Structures.
1976. Vol. 12. P. 635–648.

7. Zhilin P.A. General theory of constitutive equations in the linear theory of elas-
tic shells // Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the
Academy of Sciences of the USSR, Mechanics of Solids). 1978. No. 3. Pp. 190. (In
Russian.)

8. Zhilin P.A. A new method for the construction of theory of thin elastic shells // .
. . Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the Academy of
Sciences of the USSR, Mechanics of Solids). 1978. No. 3. (In Russian.)

9. Zhilin P.A. Direct construction of the theory of shells basing on physical principles
// Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the Academy of
Sciences of the USSR, Mechanics of Solids). 1980. No. 3. Pp. 179. (In Russian.)

10. Zhilin P.A. Basic equations of non-classical theory of shells // Dinamika i prochnost
mashin (Dynamics and strength of machines.) Trudi LPI (Proceedings of Leningrad
Polytechical Institute.) N 386. 1982. . 29–46. (In Russian.)
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11. Altenbach H., Zhilin P.A. General theory of elastic simple shells // Advances in
mechanics — Warszawa, Polska. 1988. N 4. P. 107–148. (In Russian).

Elimination of a paradox in the problem of bending deflection of a round
plate

The exact analytical solution is given (1982) for the problem of final displacements of
a round plate [1, 2]. The solution explains a well-known paradox which was described
in handbooks and assumed that the deflection of a membrane, i.e. a plate with zero
beam stiffness, was less than the deflection calculated with non-zero beam stiffness taken
into account. (The problem considers a round plate with its edges fixed and loaded
by transversal pressure, whose magnitude makes the application of the linear theory
incorrect. The latter one overestimates the deflection approximately 25 times). Later
the idea of works [1, 2] was used for calculation of an electrodynamic gate [3].

1. Zhilin P.A. Axisymmetric bending of a flexible circular plate under large displace-
ments // Vichislitelnie metodi v mekhanike i upravlenii (Numerical methods in
mechanics and control theory). Trudi LPI (Proceedings of Leningrad Polytechical
Institute.) N 388. 1982. . 97–106. (In Russian.)

2. Zhilin P.A. Axisymmetrical bending of a circular plate under large displacements
// Izvestiya AN SSSR, Mekhanika tverdogo tela (Transactions of the Academy
of Sciences of the USSR, Mechanics of Solids). 1984. No. 3. Pp. 138–144. (In
Russian.)

3. Venatovsky I.V., Zhilin P.A., Komyagin D.Yu. Inventor’s certificate No. 1490663
with priority from 02.11.1987. (In Russian.)

Critical surveys

1. Zhilin P.A. The view on Poisson’s and Kirchhoff’s theories of plates in terms of
modern theory of plates // Izvestia RAN. Mechanika Tverdogo Tela (Mechanics of
Solids). 1992. N 3. P. 48–64. (In Russian).

2. Zhilin P.A. On the classical theory of plates and the Kelvin-Teit transformation
// Izvestia RAN. Mechanika Tverdogo Tela (Mechanics of Solids). 1995. N 4.
P. 133–140. (In Russian).

3. Altenbach H., Zhilin P.A. The Theory of Simple Elastic Shells // in Critical Review
of The Theories of Plates and Shells and New Applications, ed. by H. Altenbach
and R. Kienzler. Berlin, Springer. 2004. P. 1–12.

The theory of rods

The dynamic theory of thin spatially curvilinear rods and naturally twisted rods is devel-
oped (1987–2005). The proposed theory includes all known variants of theories of rods,
but it has wider domain of application. A significant part of the work is devoted to the
analysis of a series of classical problems, including those whose solutions demonstrate
paradoxes. The results of the theory of rods and its applications are presented in the
most complete way in work [1].
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1. Zhilin P.A. Applied mechanics. Theory of thin elastic rods. Tutorial book. St.
Petersburg State Polytechnical University. 2006. 98 p. (In Russian). To be
published.

General nonlinear theory of rods and its applications to the solution of par-
ticular problems

Basing on method developed in the theory of shells, the general nonlinear theory of
flexible rods is formulated (1987), where all the basic types of deformation: bending,
torsion, tension, transversal shear are taken into account. Use of the rotation (turn)
tensor allowed to write down the equations in a compact form, convenient for the mathe-
matical analysis. In contradistinction to previous theories, the proposed theory describes
the experimentally discovered Pointing effect (the contraction of a rod under torsion).
The developed theory was applied to analyse the series of particular problems [2, 3]. A
new method [4–6] was suggested (2005) for the construction of elastic tensors, and their
structure has been determined. In this work the new theory of symmetry of tensors, de-
termined in the space with two independent orientations, is essentially used. All elastic
constants were found for plane curvilinear rods.

1. Goloskokov D.P., Zhilin .. General nonlinear theory of elastic rods with application
to the description of the Pointing effect // Deposited in VINITI No. 1912-V87. Dep.
20 p. (In Russian.)

2. Zhilin P.A., Tovstik T.P. Rotation of a rigid body based on an inertial rod //
Mechanics and Control. Proc. of St. Petersburg State Technical University. 1995.
N 458. P. 78–83. (In Russian).

3. Zhilin P.A., Sergeyev A.D., Tovstik T.P. Nonlinear theory of rods and its appli-
cation // Proc. of XXIV Summer School - Seminar “Nonlinear Oscillations in
Mechanical Systems”. St. Petersburg. 1997. P. 313–337. (In Russian).

4. Zhilin P.A. Theory of thin elastic rods //Lecture at XXXIII Summer School -
Conference “Advanced Problems in Mechanics”. St. Petersburg, Russia. 2005.
Current book. Vol. 1. (In Russian).

5. Zhilin P.A. Nonlinear Theory of Thin Rods // Lecture at XXXIII Summer School
– Conference “Advanced Problems in Mechanics”. St. Petersburg, Russia. 2005.
Current book. Vol. 2.

6. Zhilin P.A. Applied mechanics. Theory of thin elastic rods. Tutorial book. St.
Petersburg State Polytechnical University. 2006. 98 p. (In Russian). To be
published.

The Euler elastica

The famous Euler elastica [1–5] was considered (1997–2005) and it was shown that apart
from the known static equilibrium configurations there exist also dynamic equilibrium
configurations. In the latter case, the form of elastic curve remains the same, and the
bent rod rotates about the vertical axe. The energy of deformation does not change in
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this motion. Note that we do not speak about the rigid motion of a rod, since the clamped
end of the rod remains fixed. This means that the curvilinear equilibrium configuration
in the Euler elastica is unstable, contrary to the common point of view. On the other
hand, this conclusion is not confirmed by experiments. Thus there appears a paradox
requiring its explanation.

1. Zhilin P.A., Sergeyev A.D., Tovstik T.P. Nonlinear theory of rods and its appli-
cation // Proc. of XXIV Summer School - Seminar “Nonlinear Oscillations in
Mechanical Systems”. St. Petersburg. 1997. P. 313–337. (In Russian).

2. Zhilin P.A. Dynamic Forms of Equilibrium Bar Compressed by a Dead Force //
Proc. of 1st Int. Conf. Control of Oscillations and Chaos. Vol. 3. 1997. P. 399–402.

3. Zhilin P.A. Theory of thin elastic rods //Lecture at XXXIII Summer School -
Conference “Advanced Problems in Mechanics”. St. Petersburg, Russia. 2005.
Current book. Vol. 1. (In Russian).

4. Zhilin P.A. Nonlinear Theory of Thin Rods // Lecture at XXXIII Summer School
– Conference “Advanced Problems in Mechanics”. St. Petersburg, Russia. 2005.
Current book. Vol. 2.

5. Zhilin P.A. Applied mechanics. Theory of thin elastic rods. Tutorial book. St.
Petersburg State Polytechnical University. 2006. 98 p. (In Russian). To be
published.

Nikolai paradox

The Nikolai paradox [1–7] is analysed (1993-2005). The paradox appears when a rod
is subjected to the torsion by means of the torque applied to its end. The experiment
shows that the torsion torque stabilises the rod, which is in the major contradiction with
the theory. It is shown [6], that one may avoid the mentioned paradox if to choose a
special constitutive equation for the torque. The torque has to depend in a special way
on the rotational velocity. This dependence is not related to the existence (or absence)
of the internal friction in the rod.

1. Zhilin P.A., Sergeyev A.D. Twisting of an elastic cantilever rod by a torque sub-
jected at a free end. St. Petersburg State Technical University. 1993. 32 p. (In
Russian).

2. Zhilin P.A., Sergeyev A.D. Experimental investigation of the stability of a cantilever
rod under torsion deforming // Mechanics and Control. Proc. of St. Petersburg
State Technical University. 1993. N 446. P. 174–175. (In Russian).

3. Zhilin P.A., Sergeyev A.D. Equilibrium and stability of a thin rod subjected to a
conservative moment // Mechanics and Control. Proc. of St. Petersburg State
Technical University. 1994. N 448. P. 47–56. (In Russian).

4. Zhilin P.A., Sergeyev A.D., Tovstik T.P. Nonlinear theory of rods and its appli-
cation // Proc. of XXIV Summer School - Seminar “Nonlinear Oscillations in
Mechanical Systems”. St. Petersburg. 1997. P. 313–337. (In Russian).
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5. Zhilin P.A. Theory of thin elastic rods //Lecture at XXXIII Summer School -
Conference “Advanced Problems in Mechanics”. St. Petersburg, Russia. 2005.
Current book. Vol. 1. (In Russian).

6. Zhilin P.A. Nonlinear Theory of Thin Rods // Lecture at XXXIII Summer School
– Conference “Advanced Problems in Mechanics”. St. Petersburg, Russia. 2005.
Current book. Vol. 2.

7. Zhilin P.A. Applied mechanics. Theory of thin elastic rods. Tutorial book. St.
Petersburg State Polytechnical University. 2006. 98 p. (In Russian). To be
published.

The development of mathematical methods

An approach [1] is suggested (1995), which allows to analyse the stability of motion in the
presence of spinor motions described by means of rotation (turn) tensor. The problem
is that the rotation tensors are not elements of a linear space (unlike the displacement
vectors). Thus the equations in variations have to be written down as a chain of equations,
whose right parts depend on the previous variations in a nonlinear way. However, the
obtained chain of equations allows for the exact separation of variables, i.e. the separation
of the time variable.

1. Zhilin P.A. Spin motions and stability of equilibrium configurations of thin elastic
rods // Mechanics and Control. Proc. of St. Petersburg State Technical University.
1995. N 458. P. 56–73. (In Russian).

Dynamics of rigid bodies

It was the first time when the dynamics of rigid bodies was formulated in terms of the
direct tensor calculus. The new mathematical technique is developed for the description
of spinor motions. This technique is based on the use of the rotation (turn) tensor and
related concepts. The new results in the dynamics of rigid bodies are mostly presented
in the following works:

1. Zhilin P.A. Theoretical mechanics. Tutorial book. St. Petersburg State Polytech-
nical University. 2001. 146 p. (In Russian).

2. Zhilin P.A. Vectors and second-rank tensors in three-dimensional space. St. Pe-
tersburg: Nestor. 2001. 276 p.

3. Zhilin P.A. Theoretical mechanics. Fundamental laws of mechanics. Tutorial book.
St. Petersburg State Polytechnical University. 2003. 340 p. (In Russian).

Development of mathematical methods

The general investigation of the rotation (turn) tensor is given (1992) in works [1, 7, 8],
where a new proof of the kinematic equation of Euler is obtained. The old correct proof
of the kinematic equation one could find in works by L. Euler and in old text-books
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on theoretical mechanics, but it was very tedious. In a well-known course by T. Levi-
Civitta and U. Amaldi (1922) a new compact proof was suggested, but it was erroneous.
Later this proof was widely distributed and repeated in almost all modern courses on
theoretical mechanics, with exception of the book by G.K. Suslov. In work [1] the proof
of a new theorem on the composition of angular velocities, different from those cited in
traditional text-books, is proposed.

The new equation [1, 4–8] is obtained (1992), relating the left angular velocity with
the derivative of the rotation vector. This equation is necessary to define the concept
of a potential torque. Apart from that, it is very useful when solving numerically the
problems of dynamics of rigid bodies, since then there is no need to introduce neither
systems of angles, nor systems of parameters of the Klein-Hamilton type.

A new theorem [2, 3, 7, 8] on the representation of the rotation (turn) tensor in the form of
a composition of turns about arbitrary fixed axes, is proved (1995). All previously known
representations of the rotation (turn) tensors, (or, saying more precisely, of its matrix
analogues) via Euler angles, Brayant angles, plane angles, ship angles etc., are particular
cases of a general theorem, whose role, however, is not only a simple generalisation of
these cases. The most important thing is that making a traditional choice of any system
of angles, does not matter which one, we choose previously the axes. We describe the
(unknown) rotation of a body under consideration in terms of turns about these axes.
If this choice is made in an ineffectual way, and if it is difficult to make an appropriate
choice, the chances to integrate or even to analyse qualitatively the resulting system of
equations are very poor. Moreover, even in those cases when it is possible to integrate
the system, often the obtained solution is not of big practical use, since this solution
will contain poles or indeterminacy of the type zero divided by zero. As a result, the
numerical solution, obtained with the help of computers, already after the first pole or
indeterminacy becomes very distorted. The advantage and the purpose of the theorem
under discussion is the fact that it allows to consider the axes of rotation as principal
variables and to determine them in the process of the problem solution. As a result, one
can obtain the simplest (among all possible forms) solutions.

An approach [4–6] is proposed (1997), which allows to analyse the stability of motion in
the presence of spinor rotations described by the turn tensor. The method of perturba-
tions for the group of proper orthogonal tensors is developed.

1. Zhilin P.A. The turn-tensor in kinematics of a rigid body // Mechanics and Control.
Proc. of St. Petersburg State Technical University. 1992. N 443. P. 100–121. (In
Russian).

2. Zhilin P.A. A New Approach to the Analysis of Euler-Poinsot problem // ZAMM.
Z. angew. Math. Mech. 75. (1995) S 1. P. 133–134.

3. Zhilin P.A. A New Approach to the Analysis of Free Rotations of Rigid Bodies //
ZAMM. Z. angew. Math. Mech. 76. (1996) N 4. P. 187–204.

4. Zhilin P.A. Dynamics and stability of equilibrium positions of a rigid body on an
elastic foundation //Proc. of XXIV Summer School - Seminar “Nonlinear Oscilla-
tions in Mechanical Systems”. St. Petersburg. 1997. P. 90–122. (In Russian).
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5. Zhilin P.A. A General Model of Rigid Body Oscillator // Proc. of the XXV-
XXIV Summer Schools “Nonlinear Oscillations in Mechanical Systems”. Vol. 1.
St. Petersburg. 1998. P. 288–314.

6. Zhilin P.A. Rigid body oscillator: a general model and some results // Acta Me-
chanica. Vol. 142. (2000) P. 169–193.

7. Zhilin P.A. Vectors and second-rank tensors in three-dimensional space. St. Pe-
tersburg: Nestor. 2001. 276 p.

8. Zhilin P.A. Theoretical mechanics. Fundamental laws of mechanics. Tutorial book.
St. Petersburg State Polytechnical University. 2003. 340 p. (In Russian).

New solutions of classical problems

A new solution [1, 2] is obtained (1995) for the classical problem of the free rotation of a
rigid body about a fixed centre of mass (case of Euler). It is shown that for each inertia
tensor all the domain of initial values is divided in two subdomains. It is known that
there is no such a system of parameters, which would allow to cover all the domain of
initial values by unique map without poles. This fact is confirmed in the work [2], where
in each subdomain and at the boundary between them the body rotates about different
axes, depending only on the initial values. Stable rotations of the body correspond to
the interior points of the subdomains mentioned above, and unstable rotations — to the
boundary points. When constructing the solution, the theorem on the representation of
the rotation (turn) tensor, described above, plays an essential role. Finally, all character-
istics to be found can be expressed via one function, determined by a rapidly convergent
series of a quite simple form. For this reason, no problem appears in simulations. The
propriety of the determination of axes, about which the body rotates, manifests in the
fact that the velocities of precession and proper rotation have a constant sign. Remind
that in previously known solutions only the sign of the precession velocity is constant,
i.e. in these solutions only one axe of turns is correctly guessed. It follows from the solu-
tion [2], that formally stable solutions, however, may be unstable in practice, if a certain
parameter is small enough (zero value of the parameter corresponds to the boundary
between subdomains). In this case the body may jump from one stable rotational regime
to another one under action of arbitrarily small and short loads (a percussion with a
small meteorite).

A new solution [3, 4] for the classical problem of the rotation of a rigid body with
transversally isotropic inertia tensor is obtained (1996, 2003) in a homogeneous gravity
field (case of Lagrange). The solution of this problem from the formal mathematical point
of view is known very long ago, and one can find it in many monographs and text-books.
However, it is difficult to make a clear physical interpretation of this solution, and some
simple types of motion are described by it in an unjustifiably sophisticated way. In the
case of a rapidly rotating gyroscope there was obtained practically an exact solution in
elementary functions. It was shown [4] that the expression for the precession velocity,
found using the elementary theory of gyroscopes, gives an error in the principal term.

It is found (2003), in the frame of the dynamics of rigid bodies, the explanation of the
fact that the velocity of the rotation of the Earth is not constant, and the axe of the
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Earth is slightly oscillating [5]. Usually this fact is explained by the argument that one
cannot consider the Earth as an absolutely rigid body. However, if the direction of the
dynamic spin slightly differs from the direction of the earth axe, the earth axe will make
precession about the vector of the dynamic spin, and, consequently, the angle between
the axe of the Earth and the plane of ecliptics will slightly change. In this case the
alternation of day and night on the Earth will be determined not by the proper rotation
of the Earth about its axe, but by the precession of the axe.

1. Zhilin P.A. A New Approach to the Analysis of Euler-Poinsot problem // ZAMM.
Z. angew. Math. Mech. 75. (1995) S 1. P. 133–134.

2. Zhilin P.A. A New Approach to the Analysis of Free Rotations of Rigid Bodies //
ZAMM. Z. angew. Math. Mech. 76. (1996) N 4. P. 187–204.

3. Zhilin P.A. Rotations of Rigid Body with Small Angles of Nutation // ZAMM. Z.
angew. Math. Mech. 76. (1996) S 2. P. 711–712.

4. Zhilin P.A. Rotation of a rigid body with a fixed point: the Lagrange case //Lec-
ture at XXXI Summer School - Conference “Advanced Problems in Mechanics”.
St. Petersburg, Russia. 2003. Current book. Vol. 1. (In Russian).

5. Zhilin P.A. Theoretical mechanics. Fundamental laws of mechanics. Tutorial book.
St. Petersburg State Polytechnical University. 2003. 340 p. (In Russian).

New models in the frame of the dynamics of rigid bodies

We know the role which is played by a usual oscillator in the Newtonian mechanics.
In the Eulerian mechanics, the analogous role is played by a rigid body on an elastic
foundation. This system can be named a rigid body oscillator. The last one is necessary
when constructing the dynamics of multipolar media, but in its general case it is not
investigated neither even described in the literature. Of course, its particular cases were
considered, for instance, in the analysis of the nuclear magnetic resonance, and also in
many applied works, but for infinitesimal angles of rotation. A new statement of the
problem of the dynamics of a rigid body on a nonlinear elastic foundation [1, 3, 6] is
proposed (1997). The general definition of the potential torque is introduced. Some
examples of problem solutions are given.

For the first time (1997) the mathematical statement for the problem of a two-rotor
gyrostate on an elastic foundation is given [2, 4, 5]. The elastic foundation is determined
by setting of the strain energy as a scalar function of the rotation vector. Finally, the
problem is reduced to the integration of a system of nonlinear differential equations having
a simple structure but a complex nonlinearity. The difference of these equations from
those traditionally used in the dynamics of rigid bodies is that when writing them down
it is not necessary to introduce any artificial parameters of the type of Eulerian angles or
Cayley-Hamilton parameters. The solutions of concrete problems are considered. A new
method of integration of basic equations is described in application to a particular case.
The solutions is obtained in quadratures for the isotropic nonlinear elastic foundation.

The model of a rigid body is generalised (2003) for the case of a body consisting not
of the mass points, but of the point-bodies of general kind [7]. There was considered a
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model of a quasi-rigid body, consisting of the rotating particles, with distances between
them remaining constant in the process of motion.

1. Zhilin P.A. Dynamics and stability of equilibrium positions of a rigid body on an
elastic foundation //Proc. of XXIV Summer School - Seminar “Nonlinear Oscilla-
tions in Mechanical Systems”. St. Petersburg. 1997. P. 90–122. (In Russian).

2. Zhilin P.A., Sorokin S.A. Multi-rotor gyrostat on a nonlinear elastic foundation //
IPME RAS. Preprint N 140. 1997. 83 p. (In Russian).

3. Zhilin P.A. A General Model of Rigid Body Oscillator // Proc. of the XXV-
XXIV Summer Schools “Nonlinear Oscillations in Mechanical Systems”. Vol. 1.
St. Petersburg. 1998. P. 288–314.

4. Zhilin P.A., Sorokin S.A. The Motion of Gyrostat on Nonlinear Elastic Foundation
// ZAMM. Z. Angew. Math. Mech. 78. (1998) S 2. P. 837–838.

5. Zhilin P.A. Dynamics of the two rotors gyrostat on a nonlinear elastic foundation
// ZAMM. Z. angew. Math. Mech. 79. (1999) S 2. P. 399–400.

6. Zhilin P.A. Rigid body oscillator: a general model and some results // Acta Me-
chanica. Vol. 142. (2000) P. 169–193.

7. Zhilin P.A. Theoretical mechanics. Fundamental laws of mechanics. Tutorial book.
St. Petersburg State Polytechnical University. 2003. 340 p. (In Russian).

Dynamics of a rigid body on an inertial elastic foundation

The problems of construction of high-speed centrifuges, with rotational velocities 120
000 – 200 000 revolutions per minute, required the development of more sophisticated
mechanical models. As such a model it is chosen a rigid body on an elastic foundation.
The parameters of the rotor and of the elastic foundation do not allow to consider the
elastic foundation as inertialess. There was proposed (1995) a method [1, 2], allowing to
reduce the problem to the solution of a relatively simple integro-differential equation.

1. Zhilin P.A., Tovstik T.P. Rotation of a rigid body based on an inertial rod //
Mechanics and Control. Proc. of St. Petersburg State Technical University. 1995.
N 458. P. 78–83. (In Russian).

2. Ivanova E.A., Zhilin P.A. Non-stationary regime of the motion of a rigid body on an
elastic plate // Proc. of XXIX Summer School – Conference “Advanced Problems
in Mechanics”. St. Petersburg. 2002. P. 357–363.

The Coulomb law of friction and paradoxes of Painlevé

The application of the Coulomb law has its own specifics related to the non-uniqueness of
the solution of the dynamics problems. It was shown (1993), that the Painlevé paradoxes
appear because of a priori assumptions on the character of motion and the character of
the forces needed to induce this motion. The correct statement of the problem requires
either to determine the forces by the given motion, or to determine the motion by the
given forces [1, 2].
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1. Zhilin P.A., Zhilina O.P. On the Coulomb’s laws of friction and the Painlevé para-
doxes // Mechanics and Control. Proc. of St. Petersburg State Technical Univer-
sity. 1993. N 446. P. 52–81. (In Russian).

2. Wiercigroch M., Zhilin P.A. On the Painlevé Paradoxes // Proc. of the XXVII
Summer School “Nonlinear Oscillations in Mechanical Systems”. St. Petersburg.
2000. P. 1–22.

The fundamental laws of mechanics

There were suggested (1994) the formulations of basic principles and laws of the Eule-
rian mechanics [1–5] with an explicit introduction of spinor motions. All the laws are
formulated for the open bodies, i.e. bodies of a variable content, which appears to be
extremely important when describing the interaction of macrobodies with electromag-
netic fields. Apart from that, in these formulations the concept of a body itself is also
changed, and now the body may contain not only particles, but also the fields. Namely,
the latter ones make necessary to consider bodies of variable content. The importance
of spinor motions, in particular, is determined by the fact that the true magnetism can
be defined only via the spinor motions, contrary to the induced magnetism, caused by
Foucault (eddy) currents, i.e. by translational motions.

A new basic object — point-body [1–5] is introduced into consideration (1994). It is
assumed that the point-body occupies zero volume, and its motion is described com-
pletely by means of its radius-vector and its rotation (turn) tensor. It is postulated that
the kinetic energy of a point-body is a quadratic form of its translational and angular
velocities, and its momentum and proper kinetic moment (dynamic spin) are defined
as partial derivatives of the kinetic energy with respect to the vector of translational
velocity and the vector of angular velocity, respectively. It was considered (2003) the
model of a point-body [5], whose structure is determined by three parameters: mass, in-
ertia moment, and an additional parameter q, conventionally named charge, which never
appeared in particles used in classical mechanics. It is shown that the motion of this
particle by inertia in a void space has a spiral trajectory, and for some initial conditions
— a circular trajectory. Thus it is shown that in an inertial frame reference the motion
of an isolated particle (point-body) by inertia has not to follow necessarily a linear path.

There was developed (1994) a concept of actions [1–5]. This concept is based on an
axiom which supplements the Galileo’s Principle of Inertia, generalising it to the bodies
of general kind. This axiom states that in an inertial system of reference an isolated closed
body moves in such a way that its momentum and kinetic moment remain invariable.
Further, the forces and torques are introduced into consideration, and the force acting
upon a closed body is defined as a cause for the change of the momentum of this body, and
the torque, acting upon a closed body — as a cause of the change of the kinetic moment.
The couple of vectors — force vector and the couple vector — are called action.

The concept of the internal energy of a body, consisting of point-bodies of general kind [1–
5], was developed (1994); the axioms for the internal energy to be satisfied are formulated.
The principally new idea is to distinguish the additivity by mass and additivity by bodies.



Short biography and scientific results of P. A. Zhilin 23

The kinetic energy of a body is additive by its mass. At the same time, the internal energy
of a body is additive by sub-bodies of which the body under consideration consists of,
but, generally speaking, it is not an additive function of mass. In the Cayley problem,
the paradox, related to the loss of energy, is resolved [5].

Basic concepts of thermodynamics [4, 5]: internal energy, temperature, and entropy are
introduced (2002) on elementary examples of mechanics of discrete systems. The defini-
tion of the temperature concepts and entropy are given by means of purely mechanical
arguments, based on the use of a special mathematical formulation of the energy balance.

1. Zhilin P.A. Main structures and laws of rational mechanics // Proc. of the 1st
Soviet Union Meeting for Heads of Departments of Theoretical Mechanics. St. Pe-
tersburg: VIKI. 1994. P. 23–45. (In Russian).

2. Zhilin P.A. Basic concepts and fundamental laws of rational mechanics // Proc. of
XXII Summer School - Seminar “Nonlinear Oscillations in Mechanical Systems”.
St. Petersburg. 1995. P. 10–36. (In Russian).

3. Zhilin P.A. Theoretical mechanics. Tutorial book. St. Petersburg State Polytech-
nical University. 2001. 146 p. (In Russian).

4. Zhilin P.A. Basic postulates of the Eulerian mechanics // Proc. of XXIX Summer
School - Conference “Advanced Problems in Mechanics”. St. Petersburg. 2002.
P. 641–675. (In Russian)

5. Zhilin P.A. Theoretical mechanics. Fundamental laws of mechanics. Tutorial book.
St. Petersburg State Polytechnical University. 2003. 340 p. (In Russian).

Electrodynamics

It is shown [1, 2], that Maxwell equations are invariant with respect to the Galilean
transformation, i.e. the principle of relativity by Galileo is valid for them (we distinguish
transformations of frames of reference and of co-ordinate systems). The complete group
of linear transformations, with respect to which the Maxwell equations are covariant, is
found, and it is demonstrated that Lorentz transformations present quite a particular
case of the complete group.

The role, which electromechanical analogies play in the analytical mechanics of mass
points, is well-known. For the electrodynamic equations, such analogies in the modern
theoretical physics are not only unknown, but are even denied. In work [3], mathemati-
cally rigorous mechanical interpretation of the Maxwell equations is given, and it is shown
that they are completely identical to the equations of oscillations of a non-compressible
elastic medium. Thus it follows that in the Maxwell equations there is an infinite ve-
locity of the propagation of extension waves, which is in the explicit contradiction with
special relativity theory. In other words, electrodynamics and special relativity theory
are incompatible. These analogies were established by Maxwell himself for the absence
of charges, and in [3] they are proved for the general case.

The modified Maxwell equations are proposed [3–5]. In the modified theory, all the waves
propagate with finite velocities, one of them has to be greater than the light velocity in
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vacuum. If this to consider the limit case, when this velocity tends to the infinity,
the modified equations give the Maxwell equations in the limit. The waves with the
“superlight” velocity are longitudinal. One cannot eliminate the possibility that these
waves describe the phenomenon of radiation propagating with the velocity greater than
the light velocity, which is claimed to be experimentally observed by some astronomers.

It is established [3–5] that in terms of this theory electrostatic states present hyperlight
waves and are realised far from the wave front.

It is shown [3], that neither classical, nor modified Maxwell equations cannot describe
correctly the interaction between the electrons and the nucleus of the atom. The way to
solve this problem is indicated.

It is shown [6], that the mathematical description of an elastic continuum of two-spin
particles of a special type is reduced to the classical Maxwell equations. The mechanical
analogy proposed above allows to state unambigously that the vector of electric field is
axial, and the vector of magnetic field is polar.

1. Zhilin P.A. Galileo’s equivalence principle and Maxwell’s equations. // St. Peters-
burg State Technical University. 1993. 40 p. (In Russian).

2. Zhilin P.A. Galileo’s equivalence principle and Maxwell’s equations // Mechanics
and Control. Proc. of St. Petersburg State Technical University. 1994. N 448.
P. 3–38. (In Russian).

3. Zhilin P.A. Reality and mechanics // Proc. of XXIII Summer School - Seminar
“Nonlinear Oscillations in Mechanical Systems”. St. Petersburg. 1996. P. 6–49.
(In Russian).

4. Zhilin P.A. Classical and Modified Electrodynamics // Proc. of Int. Conf. “New
Ideas in Natural Sciences”. St. Petersburg, Russia. June 17–22, 1996. Part I –
Physics. P. 73–82.

5. Zhilin P.A. Classical and modified electrodynamics // Proc. of the IV Interna-
tional Conference “Problems of Space, Time, and Motion” dedicated to the 350th
anniversary of Leibniz. St. Petersburg. 1997. Vol. 2. P. 29–42. (In Russian)

6. Zhilin P.A. The Main Direction of the Development of Mechanics for XXI cen-
tury // Lecture prepared for presentation at XXVIII Summer School – Conference
“Advanced Problems in Mechanics”. St. Petersburg, Russia. 2000. Current book.
Vol. 2.

Quantum mechanics

At the end of the XIX century Lord Kelvin described the structure of an aether responsi-
ble, in his opinion, for the true (non-induced) magnetism, consisting of rotating particles.
A kind of specific Kelvin medium (aether) is considered: the particles of this medium
cannot perform translational motion, but have spinor motions. Lord Kelvin could not
write the mathematical equations of such motion, because the formulation of the rota-
tion tensor, a carrier of a spinor motion, was not discovered at the time. In work [1, 2]
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basic equations of this particular Kelvin medium are obtained, and it is shown that they
present a certain combination of the equations of Klein-Gordon and Schrödinger. At
small rotational velocities of particles, the equations of this Kelvin medium are reduced
to the equations of Klein-Gordon, and at large velocities — to the Schrödinger equation.
It is very significant that both equations lie in the basis of quantum mechanics.

1. Zhilin P.A. Reality and mechanics // Proc. of XXIII Summer School - Seminar
“Nonlinear Oscillations in Mechanical Systems”. St. Petersburg. 1996. P. 6–49.
(In Russian).

2. Zhilin P.A. Classical and Modified Electrodynamics // Proc. of Int. Conf. “New
Ideas in Natural Sciences”. St. Petersburg, Russia. June 17–22, 1996. Part I –
Physics. P. 73–82.

General theory of inelastic media

A general approach [1–6] for the construction of the theory of inelastic media is proposed
(2001–2005). The main attention is given to the clear introduction of basic concepts:
strain measures, internal energy, temperature, and chemical potential. Polar and non-
polar media are considered. The originality of the suggested approach is in the following.
The spatial description is used. The fundamental laws are formulated for the open sys-
tems. A new handling of the equation of the balance of energy is given, where the
entropy and the chemical potential are introduced by means of purely mechanical argu-
ments. The internal energy is given in a form, at the same time applicable for gaseous,
liquid, and solid bodies. Phase transitions in the medium are described without intro-
ducing any supplementary conditions; solid-solid phase transition can also be described
in these terms. The materials under consideration have a finite tensile strength; this
means that the constitutive equations satisfy to the condition of the strong ellipticity.

1. Zhilin P.A. Basic equations of the theory of non-elastic media // Proc. of the
XXVIII Summer School “Actual Problems in Mechanics”. St. Petersburg. 2001.
P. 14–58. (In Russian).

2. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.

3. Altenbach H., Naumenko K., Zhilin P. A micro-polar theory for binary media with
application to phase-transitional flow of fiber suspensions // Continuum Mechanics
and Thermodynamics. 2003. Vol. 15. N 6. P. 539–570.

4. Altenbach H., Naumenko K., Zhilin P.A. A micro-polar theory for binary media
with application to flow of fiber suspensions // Proc. of XXX Summer School –
Conference “Advanced Problems in Mechanics”. St. Petersburg. 2003. P. 39–62.

5. Zhilin P.A. Mathematical theory of non-elastic media // Uspehi mechaniki (Ad-
vances in mechanics). Vol. 2. N 4. 2003. P. 3–36. (In RUssian.)
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6. Zhilin P.A. On the general theory of non-elastic media // Mechanics of materi-
als and strength of constructions. Proc. of St. Petersburg State Polytechnical
University. N 489. 2004. P. 8–27. (In Russian).

Spatial description of the kinematics of continuum

When constructing the general theory of inelastic media there was used (2001) so called
spatial description [1–4], where a certain fixed domain of a frame of reference contains
different medium particles in different moments of time. Due to the use of the spatial
description there was constructed a theory, where the concept of the smooth differential
manifold is not used. Before such theories were developed only for fluids. For the first
time such a theory is built for solids, where the stress deviator is non-zero. For the first
time, the spatial description is applied to a medium consisting of particles with rotational
degrees of freedom. A new definition of a material derivative, containing only objective
operators, is given. This definition, including when using a moving co-ordinate system,
does not contradict to the Galileo’s Principle of Inertia [2]. It is shown that for the spatial
description one can apply standard methods of the introduction of the stress tensor and
other similar quantities [1]. The dynamic equations of the medium obtained basing upon
the fundamental laws, formulated for the open systems. An error, which presents in
the literature, appearing when integrating the differential equation expressing the law of
conservation of particles, is eliminated.

1. Zhilin P.A. Basic equations of the theory of non-elastic media // Proc. of the
XXVIII Summer School “Actual Problems in Mechanics”. St. Petersburg. 2001.
P. 14–58. (In Russian).

2. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.

3. Zhilin P.A. Mathematical theory of non-elastic media // Uspehi mechaniki (Ad-
vances in mechanics). Vol. 2. N 4. 2003. P. 3–36. (In Russian.)

4. Zhilin P.A. On the general theory of non-elastic media // Mechanics of materi-
als and strength of constructions. Proc. of St. Petersburg State Polytechnical
University. N 489. 2004. P. 8–27. (In Russian).

Theory of strains

Usually in the nonlinear theory of elasticity the theory of deformations is based only on
geometrical reasons, thus a lot of different strain tensors are considered. It is usually
assumed that all of these tensors can be used with identical success. However, this is
not correct. It is shown (2001), that the dissipative inequality imposes such restrictions
on free energy [1, 2], which at use of Almansi measure of strain appear equivalent to the
statement, that the considered material is isotropic. In other words it is shown, that
for anisotropic materials free energy cannot be a function of Almansi measure of strain.
The definition of the strain measure is given on the base of the equation of balance of
energy and the dissipative inequality. It is shown, that according to the given definition
the strain measure should be an unimodular tensor.
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1. Zhilin P.A. Basic equations of the theory of non-elastic media // Proc. of the
XXVIII Summer School “Actual Problems in Mechanics”. St. Petersburg. 2001.
P. 14–58. (In Russian).

2. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.

Equation of mass balance and equation of particles balance

Two independent functions of state are introduced: density of particles and mass
density (2002) [1–3]. Such division is important, for example, when the material tends
to a fragmentation, as in this case the weight is preserved, but the number of particles
changes. Permeability of bodies is determined by the density of particles, and internal
interactions are connected with the mass density. Introduction of the function of dis-
tribution of particles, in essence, removes the border between discrete and continuous
media. Two independent equations are formulated: the equation of mass balance and
the equation of balance of particles. A function determining the speed of new parti-
cles creation appears in the equation of particles balance; this function in its physical
sense can be identified with the chemical potential. The equation of energy balance also
contains terms which describe formation of new particles or fragmentation of original
particles.

1. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.

2. Zhilin P.A. Mathematical theory of non-elastic media // Uspehi mechaniki (Ad-
vances in mechanics). Vol. 2. N 4. 2003. P. 3–36. (In Russian.)

3. Zhilin P.A. On the general theory of non-elastic media // Mechanics of materi-
als and strength of constructions. Proc. of St. Petersburg State Polytechnical
University. N 489. 2004. P. 8–27. (In Russian).

Temperature, entropy and chemical potential

Characteristics of state, corresponding to temperature, entropy, and chemical potential
are obtained [1–4] from pure mechanical reasons, by means of special mathematical for-
mulation of the energy balance equation (2001), obtained by separation of the stress
tensors in elastic and dissipative components. The second law of thermodynamics gives
additional limitations for the introduced characteristics, and this completes their formal
definition. The reduced equation of energy balance is obtained in the terms of free en-
ergy. The main purpose of this equation is to determine the arguments on which the free
energy depends. It is shown that to define first the internal energy, and then the entropy
and chemical potential, is impossible. All these quantities should be introduced simul-
taneously. To set the relations between the internal energy, entropy, chemical potential,
pressure, etc., the reduced equation of energy balance is used. It is shown that the free
energy is a function of temperature, density of particles, and strain measures, where all
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these arguments are independent. The Cauchy-Green’s relations relating entropy, chem-
ical potential and tensors of elastic stresses with temperature, density of particles and
measures of deformation are obtained. Hence the concrete definition of the constitutive
equations requires the setting of the free energy only.

The equations characterizing role of entropy and chemical potential in formation of in-
ternal energy are obtained. Constitutive equations for the vector of energy flux [3] are
offered. In a particular case these equations give the analogue of the Fourier-Stocks law.

1. Zhilin P.A. Basic equations of the theory of non-elastic media // Proc. of the
XXVIII Summer School “Actual Problems in Mechanics”. St. Petersburg. 2001.
P. 14–58. (In Russian).

2. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.

3. Zhilin P.A. Mathematical theory of non-elastic media // Uspehi mechaniki (Ad-
vances in mechanics). Vol. 2. N 4. 2003. P. 3–36. (In Russian.)

4. Zhilin P.A. On the general theory of non-elastic media // Mechanics of materi-
als and strength of constructions. Proc. of St. Petersburg State Polytechnical
University. N 489. 2004. P. 8–27. (In Russian.)

Theory of consolidating granular media

The general theory of granular media with particles able to join (consolidate) is developed
(2001) [1, 2]. The particles possess translational and rotational degrees of freedom.
For isotropic material with small displacements and isothermal strains the theory of
consolidating granular media is developed in a closed form [1].

It is shown that the assumption that the tensor of viscous stresses depends on velocity,
leads either to failure of dissipative inequality, or to failure of hyperbolicity [1]. Hence this
assumption is unacceptable. Instead of the tensor of viscous stresses, which is frequently
used in literature, the antisymmetric stress tensor is introduced [1]. For this tensor the
Coulomb friction law is used. For the couple stress tensor the viscous friction law is used,
and this tensor is assumed to be antisymmetric.

1. Zhilin P.A. Basic equations of the theory of non-elastic media // Proc. of the
XXVIII Summer School “Actual Problems in Mechanics”. St. Petersburg. 2001.
P. 14–58. (In Russian).

2. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.

Phase Transitions and General Theory of Elasto-Plastic Bodies

The new theory of elasto-plastic bodies is developed (2002). The theory is based on the
description of the nonelastic properties by the phase transitions in the materials [1–3].
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The definition of the phase transition is given in the following way. Two material charac-
teristics are related to the density of material: solid fraction, defined as multiplication of
number of particles in a unit volume on the particle volume, and porosity (void fraction),
defined as unit minus solid fraction. A solid has several stable states, corresponding to
different values of solid fraction. Transition from one stable state to another is a typical
phase transition. The constitutive equation describing the solid fraction change near the
phase transition point is suggested.

The constitutive equation for elastic pressure is proposed [1]. This equation describes
well not only gases and liquids, but also solids with phase transitions. The limited
tensile strength is taken into account. The difference between solids and liquids mainly
is in their reaction on the shape change. This reaction can be described only if the
stress tensor deviator is taken into account. For the classical approach the deviator of
the elastic stress tensor, which is independent of velocities by definition, is ignored for
description of inelastic properties of materials. For solids this is unacceptable. One of
the problems of the theory is the definition of the internal energy structure in a way that
would make possible the existence of several solid phases. The constitutive equations
for the stress tensor deviator are suggested [1], where the shear modulus depends on the
state parameters (temperature, mass density, deformation).

1. Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proc.
of XXIX Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2002. P. 36–48.
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als and strength of constructions. Proc. of St. Petersburg State Polytechnical
University. N 489. 2004. P. 8–27. (In Russian.)

Micro-polar theory for binary media

Micro-polar theory for binary media is developed (2003) [1, 2]. The media consists from
liquid drops and fibers. The liquid is assumed to be viscous and non-polar, but with
nonsymmetric stress tensor. The fibers are described by nonsymmetric tensors of force
and couple stresses. The forces of viscous friction are taken into account. The second law
of thermodynamics is formulated in the form of two inequalities, where the components
of the binary media can have different temperatures.

1. Altenbach H., Naumenko K., Zhilin P. A micro-polar theory for binary media with
application to phase-transitional flow of fiber suspensions // Continuum Mechanics
and Thermodynamics. 2003. Vol. 15. N 6. P. 539–570.

2. Altenbach H., Naumenko K., Zhilin P.A. A micro-polar theory for binary media
with application to flow of fiber suspensions // Proc. of XXX Summer School –
Conference “Advanced Problems in Mechanics”. St. Petersburg. 2003. P. 39–62.
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Development of mathematical methods

The theory of symmetry for tensor quantities is developed. The new definition for tensor
invariants is given (2005) [1, 2]. This definition coincides with the traditional one only
for the Euclidean tensors. It is shown that any invariant can be obtained as a solution
of a differential equation of the first order. The number of independent solutions of this
equation determines the minimum number of invariants necessary to fix the system of
tensors as a solid unit.

1. Zhilin P.A. Modified theory of symmetry for tensors and their invariants //
Izvestiya VUZov. Severo-Kavkazskii region. Estestvennye nauki (Transactions of
Universities. South of Russia. Natural sciences). Special issue “Nonlinear Problems
of Continuum Mechanics”. 2003. P 176–195. (In Russian).

2. Zhilin P.A. Symmetries and Orthogonal Invariants in Oriented Space // Proc. of
XXXII Summer School – Conference “Advanced Problems in Mechanics”. St. Pe-
tersburg. 2005. P. 470–483.

Piezoelasticity

Equations of piezoelasticity are obtained (2002–2005) [1, 2]. These equations contain as
particular cases several theories, two among them are new. The proposed general theory
is based on the model of micro-polar continuum. The main equations are derived from
the fundamental laws of the Eulerian mechanics. These equations contain nonsymmetric
tensors of stress and couple stress.

1. Kolpakov Ja. E., Zhilin P.A. Generalized continuum and linear theory of the piezo-
electric materials // Proc. of XXIX Summer School – Conference “Advanced Prob-
lems in Mechanics”. St. Petersburg. 2002. P. 364–375.

2. Zhilin P.A., Kolpakov Ya.E. A micro-polar theory for piezoelectric materials // Lec-
ture at XXXIII Summer School – Conference “Advanced Problems in Mechanics”.
St. Petersburg, Russia. 2005. Current book. Vol. 2.

Ferromagnetism

The theory of the nonlinear elastic Kelvin medium whose particles perform translational
and rotational motion, with large displacements and rotations, and may freely rotate
about their axes of symmetry, is proposed. The constitutive and dynamic equations are
obtained basing upon the fundamental laws of the Eulerian mechanics. The exact analogy
is established between the equations for a particular case of Kelvin medium and the
equations of elastic ferromagnetic insulators in the approximation of quasimagnetostatics
(1998–2001) [1–3]. It is shown that the existing theories of magnetoelastic materials did
not take into account one of the couplings between magnetic and elastic subsystem, which
is allowed by fundamental principles. This coupling is important for the description of
magnetoacoustic resonance, and may manifest itself in nonlinear theory as well as in the
linear one for the case of anisotropic materials.
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P. 259–281.
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Classical and Modified Electrodynamics∗

Abstract

Analysis of classical Maxwell’s equations reveals following peculiarities: 1. In
a general case there exists no solution for the classical system; 2. If there is a
solution, it can be represented as a superposition of transversal waves propagating
with light’s velocity “c” and quasi-electrostatic conditions setting in instantly over
the whole space.

It means, that notwithstanding the settled opinion the Maxwell’s equations are
not compatible with the special theory of relativity. Modified Maxwell’s equations
are given in this paper possessing following features:

1. There exists always a solution to them;

2. This solution is a superposition of transversal and longitudinal waves, the
latter propagating with a velocity c1 > c;

3. Electrostatic conditions are setting in by passing of the longitudinal wave;

4. If the scalar potential is equal to zero, solutions for classical and modified
systems coincide, i.e. both systems give the same description for magnetic
fields;

5. In a general case solution for the modified system transforms itself into solution
for the classical system by c1 → ∞.

Classical as well as modified systems are shown to be not suitable for a cor-
rect description of interactions between the nucleus and electrons of an atom. A
way to creating a new electrodynamics based on more strict principles not using
quantification is shown.

1 Classical electrodynamics

Classical Maxwell’s equations are described and interpreted in this section using mechan-
ical terms. It was exactly electrodynamics, which was the source of the opinion about

∗Zhilin P.A. Classical and Modified Electrodynamics // Proc. of Int. Conf. New Ideas in Natural
Sciences. Part I – Physics. P. 73–82. 1996. St. Petersburg. Russia. 642 p. (Zhilin P.A. Reality and
Mechanics // Proceedings of XXIII Summer School “Nonlinear Oscillations in Mechanical Systems”,
St. Petersburg, Russia, 1996. P. 6–49. In Russian.)
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mechanistical description of Universe being basically limited and useless for investigation
of electromagnetic processes. Subsequently I intend to refute this point of view.

In the modern physics Maxwell’s equations are considered to be something like divine
revelation, thus being just postulated. In their canonical form they can be written as
follows [3, p.76]

∇ ·E =
ρ

ε0

, ∇× E = −
1

c

∂B
∂t

, ∇ ·B = 0, ∇× B =
1

c

∂E
∂t

+
1

ε0c
j , (1)

where ρ represents density of charge, j being current’s density, i.e. velocity of the charge’s
flow through a unit of area. The modern version is given here, which does not coincide
with J.Maxwell’s point of view: to Maxwell’s opinion current is not necessarily connected
with motion of charges. The latter circumstance will be shown to be quite significant.
From (1) following condition of solvability can be obtained:

∇ · j = −∂ρ/∂t. (2)

Remark. Physicists prefer to call equation (2) a law of charge conservation considering it to be a

law of Nature. From mechanical point of view generally there exist no laws of conservation, but only

balance equations for certain quantities. In particular, the local charge balance equation can be written

as follows:

∇ · j = −∂ρ/∂t + h , (3)

where h represents the volumetric speed density of the charge supplied to the given system. Even if

there exist some conservation laws in Nature as a whole, they are absolutely useless for rational science,

for we never examine Nature as a whole and never shall be able to do it. Mechanics and physics are

investigating limited material systems being able to exchange everything, including charge, with their

surroundings. Conservation laws exist for a very small class of isolated systems only. Therefore, it is

in no way acceptable to consider equation (2) as a law of Nature — this is just a necessary condition

of solvability for classical Maxwell’s equations. It plays no such role for modified Maxwell’s equations

described in the next section. For them it is possible to use (3) instead of (2).

“In the course of time an opinion has formed itself on deduction of the Maxwell’s
equations being impossible on the basis of mechanical equations regardless of any gen-
eralizations made. Most theorists are convinced today: there is no need to deduct these
equations, which are to be considered as a very successful, almost perfectly exact de-
scription of electromagnetic processes”. This is a quotation from a quite old book being
far from indisputable [4, pp.155-156]. Nevertheless, these words reflect quite correct the
contemporary position. It suffices to take a cursory look at the system (1) to feel a doubt
about its impeccability. First, there is a problem concerning treatment of the current.
According to it, vector j is defined as speed of charge’s flow through an unit of area.
The system (1) is overdefined by that being insolvable in a general case. This conclusion
follows just from the fact, that there are eight equations (ρ and j are given!) for six co-
ordinates of the vectors E and B. It is to be remarked though: the third equation of (1)
follows from other three equations, if it is true for any moment of time. So in fact there
are seven equations for six unknown quantities contained in (1). This contradiction can
be eliminated by refusing the above treatment of the current j . Consequences of such a
refusal will be discussed in section 7. Main claims arising in connection with the system
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(1) concern conclusions being obtained by mechanical interpretation of this system. Let
us represent it in another, but equivalent form.

Now we introduce vector u satisfying following conditions:

E = −
1

c

∂u
∂t

, B = ∇× u . (4)

The second and the third equations of the system (1) allow introduction of such a vector.
It is known, that every vector u can be represented as follows:

u = ∇ϕ + ∇× Φ , ∇ · Φ = 0, (5)

where potential ϕ is defined up to an arbitrary function of co-ordinates. It means,
that addition to ϕ of an arbitrary function of co-ordinates does not change electric and
magnetic field. By taking into account (4) and (5) it follows from the first equation of
the system (1):

∆ϕ = q, ∂q/∂t = −cρ/ε0, (6)

where function q is defined up to an arbitrary function of co-ordinates. Thus, it remains
to examine the fourth equation of (1). Let us represent the current j in following form:

j = ∇ϕ∗ + ∇× Φ∗ , ϕ∗ =
ε0

c

∂2ϕ

∂t2
, ∇ · Φ∗ = 0. (7)

Inserting these expressions into the last equation of (1), we obtain:

∆Φ −
1

c2

∂2Φ

∂t2
+

1

ε0c
Φ∗ = 0. (8)

It is easy to make certain, that the system (4)–(8) is exactly equivalent to the system
(1). It allows a simple mechanical interpretation. Let us notify: according to (7) a current
is not necessarily caused by motion of charges. However, in the last case the current can
be treated as motion of charges too by considering electromagnetic field as consisting
from two media, one of them being a continuum of negatively charged particles and the
other — a continuum of positively charged particles, total density of charge being equal
to zero. A current is nothing else as motion of one medium in respect to the other in
this case. By such a treatment there exists no vacuum at all.

Let us now collect all the equations in one table containing two columns. In the left
column there are equations of electrodynamics there, in the right one — equations of the
linear dynamical theory of elasticity [5].
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Electrodynamics Theory of elasticity

E = −
1

c

∂u
∂t

, B = ∇× u , u = ∇ϕ + ∇× Φ , ∇ · Φ = 0 (I)

j = ∇ϕ∗ + ∇× Φ∗ , ∇ · Φ∗ = 0
1

µ
F = ∇ϕ̃ + ∇× Φ̃ , ∇ · Φ̃ = 0 (II)

A. B.

∆Φ −
1

c2

∂2Φ

∂t2
= −

1

ε0c
Φ∗ ∆Φ =

1

c2
2

∂2Φ

∂t2
− Φ̃ (III)

A. B.

∆ϕ = q, ∂q/∂t = −cρ/ε0 , ∆ϕ −
1

c2
1

∂2ϕ

∂t2
= −

(
c2

c1

)2

ϕ̃ (IV)

ϕ∗ =
ε0

c

∂2ϕ

∂t2

A. B.

In this table c2
1 = (λ + 2µ) /ρ∗, c2

2 = µ/ρ∗, ρ∗ is mass density of the medium, λ

and µ are Lame’s constants, F representing volumetric force. Velocities c1 and c2 define
the speeds of expansion and shear waves respectively. Positiveness of deformation energy
requires fulfillment of the condition c2

1 > 4c2
2/3.

I would like to remember: in contrast to electrodynamical equations theorems of
solution existence are proved under sufficiently generalized assumptions for equations of
the elasticity theory. Let us now interpret the equations of electrodynamics. Vector u in
the line I is representing potential for electric E and magnetic B fields. In the elasticity
theory u is a vector of small displacements, E being normalized speed taken with reverse
sign and B representing the rotor of the displacement vector being rarely used in theory
of elasticity, but quite suitable for applying. Second line (II) requires no comments except
of verification, that the current j in electrodynamics is analogous to the volumetric force
in theory of elasticity. Analogy contained in line (III) will be obvious by assumptions:

c2 = c , Φ̃ ←→ 1

ε0c
Φ∗ .

Distinctions are most pronounced in the line (IV). Just the equations listed in this line
define differences between electrodynamics and mechanics. In physics they are consid-
ered to be a proof of impossibility to interpret electrodynamics from mechanistical point
of view, thus proving limited nature of mechanics. It would be more natural though,
to admit some strangeness inherent in equations of electrodynamics and not in those of
mechanics. In fact, the meaning of equation placed in the left column of the line (IV)
is quite obvious. Potential ϕ exists for every quantity ϕ̃, i.e. for every volumetric force
F . Situation is different in electrodynamics. Current j cannot be defined arbitrarily,
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but is calculated (partially) from the potential ϕ, otherwise there may be no solution
for an electrodynamical problem. This circumstance gives ground to doubts concerning
“almost perfectly exact description of electromagnetic processes” with Maxwell’s equa-
tions. However, considerations presented do not suffice. In contrast to the elasticity
theory potential ϕ is not a solution of the wave equation in electrodynamics. This
means electrodynamical potential ϕ be setting in at an instant over the whole space.
In other words, Maxwell’s equations lead to an infinitely high speed of signal’s propa-
gation, which contradicts scandalously to special theory of relativity (STR). Thus, STR
and Maxwell’s electrodynamics are not compatible with each other. There are obviously
unremovable contradictions between STR and equations of the elasticity theory as well,
the latter giving two values for speed of the signal’s propagation. Generally, any theory
giving more than one value for velocity of wave propagation cannot be compatible with
the STR. To reveal more clearly analogies in equations (IV.A) and (IV.B) let us rewrite
equations (IV.A) in an equivalent form:

∆ϕ −
1

c2
1

∂2ϕ

∂t2
= q −

c

ε0c2
1

ϕ∗,
c

ε0

ϕ∗ =
∂2ϕ

∂t2
,

∂q

∂t
= −

c

ε0

ρ . (9)

First of these equations is quite analogous to equation (IV.B), provided(
c

c1

)2

ϕ̃ ←→ c

ε0c2
1

ϕ∗ − q .

Now it is easy to establish analogy between the volumetric force F, the current and the
charge:

1

µ
F ←→ 1

ε0c
j −
(c1

c

)2

∇q

Assumption ϕ∗ = (ε0/c)∂2ϕ/∂t2 means a compulsory definition of a part of the volu-
metric force. Such an assumption appears not too convincing in mechanics as well as in
electrodynamics. Nevertheless, mechanistic interpretation of the classical electrodynam-
ics equations is obvious already, and there is no need to discuss the matter any more.
Situation becomes entirely simple, if there are no charges and currents, or no volumetric
forces in the elasticity theory. In this case line (IV) can be written as follows:

∆ϕ = 0 (IV.A), ∆ϕ =
1
c2
1

∂2ϕ

∂t2
(IV.B)

Equation (IV.B) transforms itself into (IV.A) by c1 → ∞. In this case the Maxwell’s
equations become identical to those describing oscillations of an incompressible medium,
which was noted by Maxwell himself [1, p.784].

Concluding this section we want to underline: mechanical analogies for Maxwell’s
equations have proved themselves to be simple enough and well known to all mechani-
cians.

2 Modified Maxwell’s equations

As noted above, classical Maxwell’s equations have a grave drawback: they lead to an
infinite high velocity of signal’s propagation. Unfortunately, this is not the only defect
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of classical equations and even not the most important one, as will be shown later. Here
we shall adduce a modified system of Maxwell’s equations providing only finite velocities
for propagation of any signals. By refusing connection described by the second equation
of (9) we obtain following system:

E = −
1

c

∂u
∂t

, B = ∇× u , u = ∇ϕ + ∇× Φ , ∇ · Φ = 0 ; (10)

∆Φ −
1

c2

∂2Φ

∂t2
= −

1

ε0c
Φ∗ ; (11)

∆ϕ −
1

c2
1

∂2ϕ

∂t2
= q −

c

ε0c2
1

ϕ∗ ,
∂q

∂t
= −

c

ε0

ρ , c2
1 > 4c2/3 , (12)

where the current is expressed by the formula:

j = ∇ϕ∗ + ∇× Φ∗ , ∇ · Φ∗ = 0 . (13)

The system (10)–(13) can be rewritten in a form more convenient for electrodynamics:

∇ · E =
ρ∗
ε0

, ∇× E = −
1

c

∂B
∂t

, ∇ · B = 0 , ∇× B =
1

c

∂E
∂t

+
1

ε0c
j∗ , (14)

where

ρ∗ = ρ +
1

c2
1

∂

∂t

(
ϕ∗ −

ε0

c

∂2ϕ

∂t2

)
, j∗ = j − ∇

(
ϕ∗ −

ε0

c

∂2ϕ

∂t2

)
. (15)

It is necessary to add equations (12) and (13) to these relations to obtain a closed system.
System (14) appears to be like the system (1), but the meaning of it is significantly

different. This difference is especially noticeable for areas, where ρ and j are equal to
zero.

ρ = 0 , j = 0 ⇒ ϕ∗ = c(t) , Φ∗ = 0 .

According to classical system (1) we shall have for this case: ∇ · E = 0 . This is exactly
the relation infinite velocity of signal’s propagation is hidden in. Let us imagine following
situation. Suppose, there existed two point charges by t < 0, having equal amount, but
different signs and being situated at the same point by t ≤ 0. In that case E = 0 , B = 0 .

for t ≤ 0. At the moment t = 0 these charges begin to scatter. It is easy to make certain,
that potential ϕ will have to differ from zero by t > 0. By representing fields E and
B with waves there would exist an area located far away from charges, where fields E
and B did not come into existence yet. This area is separated from regions with existing
fields E and B with a certain movable surface Σ being called wave front (see Figure 1).
Let us choose a closed area bordered by the surface S. According to classical equations
we shall have inside of this surface:

∇ · E = 0 , ∇ · B = 0 .

These conditions are true everywhere for transversal waves, including interior of the
surface S, i.e. they are true for B and a part of E represented by a transversal wave.
But potential ϕ cannot be represented with a transversal wave, therefore it is impossible
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Figure 1: Wave front

for the quantity ∇ · E to be equal to zero at the wave front, because there is something
coming inside of S, but nothing comes out of it. The contradiction disappears, if we
agree, that ϕ is not a wave and it does not have a wave front. This assumption conforms
to classical electrodynamics — potential ϕ is setting in instantaneously over the whole
space. According to modified system ∇·E �= 0 even if there are no charges and currents
present. In the next section we shall present examples showing clearly all the points
mentioned before.

Modified system (10)–(13) cannot be worse than the classical one, for the latter is
contained in the first as a special case. A most “strange” feature of the system (10)–(13)
is presence of waves propagating with a velocity c1 > c . In the next section it will be
shown, that these waves are responsible for setting in of electrostatic fields. Therefore, the
modified system eliminates the abyss between electrostatics and electrodynamics inherent
in classical Maxwell’s equations. These equations do not allow it to infer electrostatics
from a dynamical problem, electrostatics being quite a system “closed in itself”. The
system (10)–(13) can be considered mathematically irreproachable. How real are the
waves described by equation (12)? What is the value of the velocity c1? There are no
answers to these questions yet. Pure intuition confirms existence of transversal waves
(12). For myself, I doubt it in no way, for there arise unsolvable problems otherwise.
Existence of waves propagating faster than light is inquestionable from experimental
point of view. This fact was first established by N.A.Kosyrev [2] and then confirmed
with all possible thoroughness by Academician M.M.Lavrentyev and his colleagues [6,7].
The essence of Kosyrev’s experiment consists in following. He has developed a sensor to
detect radiation of different types without subtilizing the nature of it. Using this sensor,
Kosyrev has fixed radiation flows coming from stars. By directing the telescope at a
visible star he would fix a local maximum of radiation intensity. But then he has made
the most staggering discovery: he would fix a more intensive radiation by directing the
telescope at the point on the sky, where the star would be really positioned at the moment
of observation. Of course, there would be no star to be seen at that point, because the
light coming from it will reach the Earth in distant future only. One can agree or disagree
with explanations given for that by N.A.Kosyrev. But the fact of existence of radiation
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propagating much faster than light appears incontestable. Sure, there are no definite
reasons to assume equation (12) be describing exactly that radiation, but one cannot
exclude such a possibility as a matter of principle. In any case, special experiments are
needed to verify the system (10)–(13) and to define the velocity c1. It is important
to note: any experimental data being explainable by classical equations would be full
explained by modified equations as well.

So, the modified system cannot be worse than the classical one. Moreover, it is much
better theoretically. Nevertheless, fundamental completeness of the classical as well as
of the modified system appears more than doubtful. It is clear intuitively, that magnetic
phenomena are being described by these systems incompletely and in a heavy distorted
form, if at all. I cannot go into details here and shall confine myself to obvious remarks
demonstrating fundamental incompleteness of the Maxwell’s equations. To this end it is
necessary to take into account facts firmly established by experimental physics.

Fact one. Interactions between the nucleus and the electrons of an atom must be of
electromagnetic nature, thus they are to be described with equations of electrodynamics.

Fact two. Any atom possesses a mixed discrete-continuous spectrum to be defined
experimentally.

Striving for explanation of these facts has led to establishment of quantum physics.
From the point of view adopted in this paper integrity of an atom and its structure (but
not the structure of the nucleus or electrons) is to be explained using equations for the
second ether, i.e. equations of electrodynamics, but sure not classical electrodynamics. It
is known in mechanics (see for example [8]), that mixed spectra appear by investigation of
some specific problems provided presence of two main factors. First of them: presence of
a boundless medium described by an operator with continuous spectrum disposed above
a certain frequency (cut-off frequency). Second ether plays the role of such a boundless
medium. Equations describing oscillations of an infinite beam (or a string) on an elastic
bedding can be cited as an example of equations being defined on a boundless medium
and having a cut-off frequency. To get a cut-off frequency from an electrodynamical
equation for a boundless medium it is necessary to take into account spinorial motions
being responsible for magnetic phenomena. The second factor: discrete spectrum appears
below the cut-off frequency, if there are discrete particles inserted into the field of operator
with continuous spectrum. Nucleus and electrons play the role of such particles. By
inserting nucleus and electrons into classical or modified electromagnetic field there will
appear no discrete (separated) frequencies, because the system (1) as well as the system
(10)–(13) do not have any cut-off frequencies. The latter would appear in waveguides,
but that is not a boundless medium anymore. Thus, electrodynamical equations are to
be significantly changed to explain the structure of an atom. Exactly this is being done
in quantum electrodynamics, but there are other ways remaining in the framework of the
classical mechanics.

3 Electromagnetic field of a growing point charge

Some facts inherent in classical electrodynamics give rise to considerable doubts by every-
one educated on traditions of classical mechanics. First of all, it is true for electrostatics,
which is included in electrodynamics as a thing for itself. Every static problem in me-
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chanics can be derived from an appropriate dynamical problem by transition to a limit.
Static conditions are setting in over a body by means of certain waves. That is not so in
electrodynamics: electrostatic field sets in instantaneously over the whole space. There
is another fact. R.Feinmann writes [3, p.78]: “Laws of physics do not answer the ques-
tion: “What will happen by a sudden appearance of a charge at a given point? Which
electromagnetic effects will be observed?” There can be no answer to that, because our
equations deny the very possibility of such events. If it would happen, we would need
new laws, but we cannot say, what they would be like to...”. It sounds very strange for
a mechanician. In mechanics we suddenly apply forces of unknown sources and observe
the system’s reaction to these forces. Moreover, the main equations have to be solv-
able by arbitrarily determined external forces irrespective of the very possibility for such
forces to exist. Charges and currents in electrodynamics are analogous to volumetric
forces in the elasticity theory. Therefore, from mechanical point of view a satisfactory
electrodynamical theory is just obliged to give a simple answer to Feinmann’s question.

Suppose, there is a charge coming into existence at a given point (at the initial point
of co-ordinate system). We assume this charge called a point source to be changing
according to following law:

Q(t) = Q0[1 − e(t)] , e(t) ≡ exp
(

−2π
t

τ

)
t ≥ 0

It is required to define disturbances of electromagnetic field connected with this source.
Physicists prefer to call these disturbances just electromagnetic field as such. The prob-
lem formulated was investigated by R.Feinmann for an arbitrary function Q(t) [3, pp.145-
147]. The reader can compare solution represented below with that of R.Feinmann.

The problem possesses spherical symmetry, i.e. there exist two planes of the mirror
symmetry. Therefore, all quantities being represented by axial vectors, must be equal to
the zero vector:

B = 0 , Φ = 0 , Φ∗ = 0 .

Firstly, let us try to solve this problem using the classical system (1) under assumption of
current being a motion of charges. As there are no moving charges there, j = 0 . We shall
construct the solution using spherical co-ordinate system. In this case E = E(r, t) er .
Divergence E is equal to zero by r �= 0, therefore

∇ ·E =
∂E
∂r

+
2

r
E = 0 ⇒ E(r, t) =

C(t)

r2
.

Using theorem of Gauss, we can define C(t) and then the field E:

E =
Q(t)

4πε0r2
er . (16)

From the last equation of (1) we conclude, that ∂E/∂t = 0 . Hence, there is no solution
of the classical system (1) by j = 0, because dQ/dt �= 0 . This is just the case, which
was investigated by R.Feinmann, thus, the formula (21.13) cannot be considered to be a
solution.

If we adopt a quite forced assertion about current not being necessarily connected
with motion of charges and define the current as an additional unknown quantity, we
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shall be able to solve the classical system, because we obtain from the last equation of
(1) and relation (16) for that case:

j = −
∂E
∂t

= −
1

4πr2

dQ

dt
er .

Despite of existence of a formal solution it cannot be considered physically satifactory,
for it sets in instantaneously over the whole space.

Let us now investigate the problem using the modified system (10)–(13). Here the
current is assumed to be motion of charges, i.e. the quantity j is determined. We can
write for that case: j = 0 ⇒ ϕ∗ = 0, Φ∗ = 0 .

Potential ϕ = ϕ(r, t) is described by equation (12)

∆ϕ =
1

c2
1

∂2ϕ

∂t2
+ q ;

∂q

∂t
= −

c

ε0

ρ .

Let us rewrite this equation for the function ψ(z, t) = ∂ϕ/c∂t

∆ψ =
1

c2
1

∂2ψ

∂t2
−

1

ε0

ρ . (17)

We can define electric field using following formula:

E = −
1

c

∂

∂t
∇ϕ = −∇ψ = −

∂ψ

∂r
er .

Classical theorem of Gauss is no more true for this case. Suppose, the initial point of
the co-ordinate system is surrounded with a small spherical volume Vr , r → 0 . By
multiplying both sides of (17) with dVr and integrating them over volume Vr we obtain:∫

Vr

∆ψ dVr =
1

c2
1

∂2

∂t2

∫
Vr

ψ dVr −
1

ε0

Q0 [1 − e(t)] . (18)

Using the divergence theorem, we shall have:∫
Vr

∆ψ dVr =

∫
Sr

er · ∇ψ dSr = −

∫
Sr

er ·EdSr .

Assuming r→ 0, we can write:

lim
r→0

∫
Sr

er ·EdSr =
Q0

ε0

[1 − e(t)] . (19)

This relation will replace the theorem of Gauss for us.
Let us write equation (17) for an area with r �= 0

∂2rψ

∂r2
=

1

c2
1

∂2rψ

∂t2
⇒ rψ(r, t) = f(r − c1t) ,

Here it is taken into account, that no radiation is coming from infinity. As there was no
field by t = 0, f(s) = 0 by s ≥ 0 . Consequently, the function f(r − c1t) is different from
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zero only by negative values of the argument s = r − c1t , i.e. in the area r < c1t . Thus,
we obtain a wave representation for the field E:

E = −
∂

∂r

[
f(r − c1t)

r

]
er =

[
f(r − c1t)

r2
−

f ′(r − c1t)

r

]
er .

Now we can write: ∫
Sr

er ·EdSr = 4π [f(r − c1t) − rf ′(r − c1t)] .

By substitution this expression into (19) we get:

f(−c1t) =
Q0

4πε0

[1 − e(t)] .

Using this relation, we can define function f by negative values of the argument.
Finally we obtain following solution:

E(r, t) = −
Q0

4πε0

er

∂

∂r

⎧⎨
⎩

1

r

[
1 − exp

(
2π

r − c1t

c1τ

)]
, r ≤ c1t ;

0 , r ≥ c1t .

(20)

From this expression it can be easily seen, that a quasi-static solution (16) is setting in
for the area r < c1(t − τ) by t > τ. This solution is given by the classical system (1)
assuming presence of non-zero current. Current is absent in the solution (20).
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A General Model of Rigid Body Oscillator∗

Abstract

The present discourse develops a new model named by a rigid body oscillator.
In Eulerian mechanics this model plays the same role as the model of nonlinear
oscillator in Newtonian mechanics. The importance of the introduction of the rigid
body oscillator, i.e. a rigid body oscillator on an elastic foundation of general kind,
into consideration was pointed out by many scientists. However the problem is not
formalized up to now. In the paper all necessary for a mathematical description
concepts are introduced. Some of them are new. The equations of motion are rep-
resented in unusual for dynamics of rigid body form, which has a clearly expressed
simple structure but contain the nonlinearity of a complex kind. These equations
give the very interesting object for the theory of nonlinear oscillations. The so-
lutions of some problems are given. For the simplest case the exact solution was
found by an essentially new method of an integration of basic equations.

1 Introduction

The nonlinear (linear) oscillator is the most important model of classical physics. An
investigation of many physical phenomenons and a development of many methods of
nonlinear mechanics had arisen in the science due to this model. At the same time it
was recognized the necessity of construction of models with new properties. Especially
it was important in quantum mechanics, where many authors pointed out that a new
model must be something like a rigid body on an elastic foundation. However, such
model was not created up to now. Why? The full answer on this question will be found
by historians later.

A rigid body on an elastic foundation will be called the rigid body oscillator in what
follows. A general model of such object can be used in many cases, for example, in
mechanics of continuum multipolar media. For the construction of model the three new
elements are needed: the vector of turn, the integrating tensor, and the potential torque.
Let us briefly discuss these concepts.

An unusual situation takes place with the vector of turn. From the one side, the
well-known theorem of Euler proves that any turn of the body can be realized as the

∗Zhilin P.A. A General Model of Rigid Body Oscillator // Proceedings of the XXV-XXIV Summer
Schools “Nonlinear Oscillations in Mechanical Systems”, volume 1, St. Petersburg, Russia, 1998. P. 288–
314.



44 P. A. Zhilin. Advanced Problems in Mechanics

turn around some unit vector m by a certain angle θ. Thus the turn can be described
by the vector θ = θm. This fact can be found in many books on mechanics. From the
other side the same books claim that the vector θm is not a vector, and a description of
a turn in terms of vector is impossible. May be by this reason a vector of turn has no
applications in conventional dynamics of rigid body. However namely the vector of turn
plays the main role in dynamics of rigid body on an elastic foundation.

Integrating tensor. In classical mechanics the linear differential form vdt is the
total differential of the vector of position vdt = dR. It is not true for spinor movements.
If the vector ω is a vector of angular velocity, then the linear differential form ωdt is
not a total differential of the vector of turn. However, it can be proved that there exists
a tensor Z that transforms the linear differential form ωdt into the total differential
dθ of the vector of turn θ. This fact was established in the work [2]. The integrating
tensor Z plays the decisive role for an introduction of a potential torque. The latter
expresses an action of the elastic foundation on the rigid body. Thus it is an essential
element of a general model of rigid body oscillator.

The basic equations of dynamics of rigid body oscillator contain a strong nonlinearity
but their form is rather simple. These equations give the very interesting object for
methods of nonlinear mechanics. In the paper some simple examples are considering.
In particular a new method of integration of the basic equations is given in the case of
simplest model.

Author hopes that the clarity of the mathematical formulas in the paper will be able
to compensate a helplessness of its language of words.

2 Mathematical preliminaries

In the section certain aspects of the tensor of turn and the vector of turn will be briefly
presented. Some initial definitions can be found in the paper [1].

2.1 Vector of turn

A vector of turn is the very old concept. It is difficult to find another concept, for which
there exist so many inconsistent propositions as for the vector of turn. The latter plays the
main role in the present work. Because of this it seems to be necessary to give the strict
introduction of the vector of turn and to describe its basic properties. The introduction
of the vector of turn is determined by the well-known statement of Euler: any turn can be
represented as the turn around some axis n by the certain angle θ. The vector θn, |n|=1,
is called the vector of turn. Note that two different mathematical concepts correspond
to one physical (or geometrical) idea of turn. One of them is described by a tensor of
turn and another is described by a vector of turn. Of course both of them are connected
by a unique manner. For the turn-tensor we shall use the notation [1]

Q (θn) = (1 − cosθ)n ⊗ n + cosθE + sin θn× E. (1)

An action of the tensor Q (θn) on the vector a can be expressed in the form

a′ = Q (θn) · a = (a · n)n + cosθ (a − a · nn) + sin θn× a. (2)
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If n× a = 0, then a′ = a. If a · n = 0, then we have

a′ = cosθa + sin θn × a.

This means that vector a′ is the vector a turned around the vector n by the angle θ.
Representation (1) can be rewritten in another form

Q (θ) = E +
sin θ

θ
R +

1 − cosθ

θ2
R2 = expR, (3)

where
R = θ × E, θ = |θ| . (4)

The vector θ in (3), (4) is called the vector of turn. Note that there exists a little
difference between representations (1) and (3) . In (1) the quantity θ is the angle of turn
and can be both positive and negative. In (3) the quantity θ is the modulus of the
vector of turn, i.e. the modulus of the angle of turn. such interpretation is possible since,
for example, sin θ/θ = sin |θ| / |θ|. As a rule, representation (3) is more convenient for
applications then expression (1). Let us consider a superposition of two turns

Q (θ) = Q (ϕ) ·Q (ψ) . (5)

The vector of total turn θ is connected with the vectors of turn ϕ and ψ by the
formulas

1 + 2 cos θ = cosϕ + cosψ + cosϕ cosψ−

−2
sin ϕ

ϕ

sin ψ

ψ
ϕ · ψ +

(1 − cosϕ)

ϕ2

(1 − cosψ)

ψ2
(ϕ · ψ)

2
, (6)

2
sin θ

θ
θ =

[
sin ϕ

ϕ
(1 + cosψ) −

(1 − cosϕ)

ϕ2

sin ψ

ψ
ϕ · ψ

]
ϕ + (7)

+

[
sin ψ

ψ
(1 + cosϕ) −

(1 − cosψ)

ψ2

sin ϕ

ϕ
ϕ · ψ

]
ψ +

+

[
sin ϕ sin ψ

ϕψ
−

(1 − cosϕ)

ϕ2

(1 − cosψ)

ψ2
ϕ · ψ

]
ϕ × ψ.

Note that from expressions (3), (4) it follows

R · θ = 0, Q (θ) · θ = θ. (8)

2.2 Integrating tensor

The vector of turn θ(t) plays for spinor movements the same role as the vector of position
R(t) for translation movements. In the latter case the translation velocity v can be found
by means of simplest formula v = Ṙ(t). This means that the linear form vdt is the
total differential of the vector of position. For spinor movements the situation is more
complicated, since the linear form ωdt, where ω is the vector of angular velocity, is not
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the total differential of the vector of turn θ. Thus it is necessary to find an integrating
factor that transforms the linear form ωdt into the total differential of vector of turn
dθ. For this end let us consider the left Poisson equation [1]

Q̇ (θ) = ω × Q (θ) , ḟ ≡ df/dt. (9)

This equation for the tensor of turn Q (θ) is equivalent to a system of nine scalar equa-
tions but only three of them are independent. In order to find these independent equa-
tions it is possible to substitute expression (3) into equation (9). After some transforma-
tions the next equation can be derived

θ̇ (t) = Z (θ) · ω (t) , (10)

where
Z (θ) = E −

1

2
R +

1 − g

θ2
R2, g =

θ sin θ

2 (1 − cosθ)
. (11)

The tensor Z (θ) will be called the integrating tensor in what follows. The nonsingular
tensor Z has the determinant

detZ (θ) = θ2/2 (1 − cosθ) �= 0.

The integrating tensor has a number useful properties. Let us describe some of them.
First of all, the tensor Z (θ) is an isotropic function of the vector of turn θ. This means
that

Z (S · θ) = S · Z (θ) · ST , ∀S : S · ST = E, detS = 1. (12)

If S = Q (θ), then from (12) and (8) it follows

Z (θ) ·Q (θ) = Q (θ) · Z (θ) .

Besides, it can be checked the identity

ZT (θ) = Q (θ) · Z (θ) = Z (θ) ·Q (θ) . (13)

For the right angular velocity Ω = QT (θ) · ω — see [1] — from expressions (10) and
(13) it follows

θ̇ (t) = ZT (θ) · Ω (t) . (14)

This equation is equivalent to the right Poisson equation [1]. In the explicit form equa-
tions (10) and (14) can be rewritten by such manner

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) , θ |t=0= θ0, (15)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) , θ |t=0= θ0. (16)

Problem (15) is the left Darboux problem[1]. If the left angular velocity is known, then
the vector of turn (and therefore the turn-tensor) can be found as the solution of problem
(15). It is much more simple task (at least for numerical analysis) then a solution of the
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conventional Riccati equation. The same can be said with respect to the right Darboux
problem (16). Expressions (15) and (16) can be rewritten in the equivalent form

θ̇ = gω −
1

2
θ × ω +

1 − g

θ
θ̇θ, (17)

θ̇ = gΩ +
1

2
θ × Ω +

1 − g

θ
θ̇θ. (18)

Here we take into account the identity

θ · ω = θ · Ω = θ · θ̇ = θθ̇

Sometimes it is more convenient to use an inverse form of equations (10) and (14)

ω(t) = Z−1 (θ) · θ̇ (t) , Ω(t) = Z−T (θ) · θ̇(t), (19)

where
Z−1 (θ) = E +

1 − cosθ

θ2
R +

θ − sin θ

θ3
R2. (20)

2.3 Potential torque

Let us introduce a concept of potential torque. This concept is necessary for a statement
and an analysis of many problems. Nevertheless a general definition of potential torque
is absent in literature.

Definition: Torque M (t) is called potential if there exists scalar function U (θ)
depending on a vector of turn such that the next equality is valid

M · ω = −U̇ (θ) = −
dU

dθ
· θ̇. (21)

Making use of equation (10) this equality can be rewritten in the form(
M +

dU

dθ
· Z
)
· ω = 0.

This equality must be satisfied for any vector ω. It is possible if and only if

M = −ZT (θ) · dU

dθ
+ f (θ, ω) × ω, (22)

where f (θ, ω) is some functional of vectors θ and ω.
Definition: a torque M is called positional if M depends on the vector of turn θ

only. For the positional torque M (θ) we have

M (θ) = −ZT (θ) · dU (θ)

dθ
. (23)

Let us show two simple examples.
If the potential function has a form of an isotropic function of a vector of turn

U (θ) = F
(
θ2
)
,
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then from expression (23) it follows

M (θ) = −2
dF
(
θ2
)

d (θ2)
θ.

Let the potential function has the simplest form

U (θ) = Ck · θ, C = const, k = const.

However, for the torque we have rather complex expression

M = −CZT · k = −C

[
k +

1

2
θ × k +

1 − g

θ2
θ × (θ × k)

]
.

Let there be given a unit vector k.

Definition: the potential U (θ) is called transversally isotropic with the axis of
symmetry k if the equality

U (θ) = U [Q (αk) · θ]

holds good for any tensor of turn Q (αk) .

It can be proved that a general form of a transversally isotropic potential can be
expressed as a function of two arguments

U (θ) = F
(
k · θ, θ2

)
. (24)

For this potential one can derive the expression

M (θ) = −2
∂F

∂ (θ2)
θ −

∂F

∂ (k · θ)
ZT · k. (25)

There exists the obvious identity

(E − Q (θ)) · θ =
(
E − QT

) · θ = 0 =⇒ (a − a′) · θ = 0,

a′ = Q · a.

Taking into account this identity and expression (25) one can get

(E − Q (θ)) · M = −
∂F

∂ (k · θ)
k × θ.

Multiplying this equality by the vector k we shall obtain

(k − k′) ·M = 0. (26)

For the isotropic potential equality (26) holds good for any vector a. Sometimes
equality (26) is very important — see, for example, section 4.
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2.4 The perturbation method on the set of properly orthogonal
tensors

Any turn-tensors must be subjected to restrictions

Q ·QT = QT ·Q = E, detQ = +1. (27)

This means that the perturbed tensor of turn Qε must be subjected to conditions
(27) as well. In contrast with this the vector of turn has no restrictions like (27). Because
of this the perturbed vector of turn can be defined in the simplest form

θε = θ + εϕ, |ε| 
 1, (28)

where the vector ϕ is called the first variation of the vector of turn. The perturbed
tensor of turn can be found by a usual way

Qε = expRε = exp (θε × E) . (29)

Equations (27) are satisfied by the tensor Qε for arbitrary vector θε. We shall consider
the parameter ε as an independent variable. In such case it is possible to introduce the
left ηε and the right ζε velocities of perturbation

∂

∂ε
Qε = ηε × Qε,

∂

∂ε
Qε = Qε × ζε, ηε = Qε · ζε. (30)

The perturbed angular velocities can be found from the Poisson equations

Q̇ε = ωε × Qε, Q̇ε = Qε × Ωε, ωε = Qε · Ωε. (31)

The conditions of integrability for system (30), (31) can be written in the form

∂

∂ε
ωε = η̇ε + ηε × ωε,

∂

∂ε
Ωε = ζ̇ε − ζε × Ωε. (32)

For the velocities of perturbation we have the expressions that are analogous to equa-
tions (19)

ηε = Z−1 (θε) · ∂

∂ε
θε = Z−1

ε · ϕ, ζε = Z−T
ε · ϕ. (33)

The perturbed angular velocities can be found by means of expressions

ωε = Z−1
ε · θ̇ε, Ωε = Z−T

ε · θ̇ε.

If an unperturbed vector θ does not depend on time (a state of equilibrium), then

ωε = εZ−1
ε · ϕ̇, Ωε = εZ−T

ε · ϕ̇. (34)

Let there be given the function f (ε, t). The quantity

f∗ (t) = [∂f (ε, t) /∂ε]ε=0 (35)
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is called the first variation of the function f (ε, t). For the first variation of the turn-tensor
and of the velocities of perturbation we have

Q∗ = η0 × Q0, η0 = Z−1
0 · ϕ, ω∗ = η̇0 + η0 × ω0, (36)

where the subscripts 0 marks the unperturbed state, η0 = ηε |ε=0.
For the right quantities the next expressions are valid

Q∗ = Q0 × ζ0, ζ0 = Z−T
0 · ϕ, Ω∗ = ζ̇0 − ζ0 × Ω0. (37)

If the perturbations are superposed on a state of equilibrium, then ω0 = Ω0 = 0.
Let us write down the formulas for the first variation of modulus of the vector of turn

θ∗ =
1

θ0

θ0 · ϕ =
1

θ0

θ0 · η0 =
1

θ0

θ0 · ζ0. (38)

3 The equations of motion of the rigid body oscillator

Let us consider a rigid body with a fixed point O. The body is supposed to be clamped
in an elastic foundation, which is resisting to any turn of the body. The position of the
body, in which the elastic foundation is undeformed, we shall choose as the reference
position. The tensor of inertia with respect to the fixed point O of the body will be
denoted as

A = A1d1 ⊗ d1 + A2d2 ⊗ d2 + A3d3 ⊗ d3, (39)

where Ai > 0 are the principal moments of inertia and the vectors di are the principal
axes of the inertia tensor. Of course the tensor A can be represented in terms of arbitrary
basis ei

di = αm
i em, A = Amnem ⊗ en, Amn =

3∑
i=1

αm
i αn

i Ai.

If the body has the axis of symmetry k, then the inertia tensor will be transversally
isotropic

A = A1 (E − k ⊗ k) + A3k ⊗ k, d3 = k, A1 = A2. (40)

The position of the body at the instant t we shall call the actual position of the body.
A turn of the body can be defined by the turn-tensor P (t) or by the vector of turn θ (t)

P (t) = Q (θ (t)) .

The tensor of inertia A(t) in the actual position is determined by the formula

A(t) = P (t) · A ·PT (t) . (41)

If the tensor A is transversally isotropic, then one can write down

A(t) = A1 (E − k′ ⊗ k′) + A3k′ ⊗ k′, k′ = P · k. (42)

A kinetic moment of the body can be expressed in two forms. In terms of the left angular
velocity

L = P ·A ·PT · ω = A1ω + (A3 − A1) (k′ · ω)k′. (43)
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Here the first sign of equality concerns to a general case, the second sign of equality is
applied to the transversally isotropic tensor of inertia only. In terms of the right angular
velocity the kinetic moment has the form

L = P · A · Ω = P · [A1Ω + (A3 − A1) (k · Ω)k] . (44)

Let us note that
k′ · ω = k ·PT · ω = k · Ω. (45)

An external torque M acting on the body can be represented in the form

M = Me + Mext,

where Me is a reaction of the elastic foundation and Mext is an additional external
torque. The elastic torque Me is supposed to be potential. Besides it is supposed to be
positional. In such case we write — see equation (23)

Me = −ZT (θ) · dU (θ)

dθ
, (46)

where the scalar function U(θ) will be called an elastic energy. In what follows the elastic
foundation is supposed to be transversally isotropic. This means that the elastic torque
can be represented in form (25)

Me (θ) = −C
(
θ2,k · θ)θ − D

(
θ2,k · θ)ZT (θ) · k, (47)

where the unit vector k is placed on the axis of isotropy of the body when the elastic
foundation is in the undeformed state.

C = 2
∂

∂ (θ2)
U
(
θ2,k · θ) , D =

∂

∂ (k · θ)
U
(
θ2,k · θ) . (48)

Let us show one of possible expressions of the elastic energy

U =
1

2

α2cθ2

α2 − θ2 + (k · θ)
2

+
1

2

β2 (d − c) (k · θ)
2

β2 − (k · θ)
2

, (49)

where α2 > 0, β2 > 0, c > 0 and d > 0 are the constant parameters and also parameters
c and d are called the bending rigidness and torsional rigidness of the elastic foundation
respectively.

If the parameters α2 and β2 tend to the infinity, then we shall get the simplest form
of the elastic potential

U =
1

2
c
(
θ2 − (k · θ)

2
)

+
1

2
d (k · θ)

2
. (50)

In this case expression (47) takes the form

Me (θ) = −cθ − (d − c)k · θZT (θ) · k. (51)
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For the external torque Mext let us accept the expression

Mext = −ZT (θ) · dV (θ)

dθ
+ Mex, (52)

where the first term describes the potential part of the external torque. The second law
of dynamics of Euler can be represented in two equivalent forms. In terms of the left
angular velocity it takes the form

[
P (θ) ·A ·PT (θ) · ω]˙+ ZT (θ) · d (U + V)

dθ
= Mex. (53)

To this equation we have to add the left Poisson equation in form (15)

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) . (54)

System of equations (53) and (54) gives to us a general model of the rigid body oscillator.
In terms of the right angular velocity this model can be represented in the form

A · Ω̇ + Ω × A · Ω + Z (θ) · d (U + V)

dθ
= PT (θ) · Mex, (55)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) . (56)

It is important that the model of rigid body oscillator is represented in terms of natural
variables: the vector of turn and the vector of angular velocity. Besides significant merit
of stated above equations is that they contain the first derivatives of the unknown vectors
only. Thus it is possible to use standard methods of the numerical analysis.

The rest of the paper deals with applications of the derived equations.

4 The stability of equilibrium state of rigid body oscil-

lator under the action of the follower torque. Para-
dox of Nikolai

Let us consider the classical problem that was investigated by E.L.Nikolai [3]. Later it
was studied by many authors — see, for example, [4], [5], where another references can
be found.

The inertia tensor of the body is supposed to be transversally isotropic and is defined
by expression (40). An external torque is defined by the next expression

Mex = LP (θ) · k, L = const, (57)

where the unit vector k is placed on the axis of symmetry of the body in the reference
position when the elastic foundation is undeformed.

Accepting the stated above assumptions we are able to write down equations (55)
and(56) in the next form.

A1Ω̇ + (A3 − A1)
(
k · Ω̇

)
k − (A3 − A1) (k · Ω)k× Ω + Cθ + DZT (θ) · k = Lk, (58)
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θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) , g =

θ sin θ

2 (1 − cosθ)
, (59)

where the functions C and D are defined by expressions (48). It is easy to find the
equilibrium solution of system of equations (58) and (59)

θ = θk, θ = const, Ω = 0. (60)

Substituting (60) into system (58)–(59) we shall get the scalar equation

C
(
θ2, θ

)
θ + D

(
θ2, θ

)
= L. (61)

If the elastic energy has form (50), then equation (61) takes the linear form

C
(
θ2, θ

)
= c, D

(
θ2, θ

)
= (d − c)k · θ =⇒ θ = Lk/d. (62)

In order to investigate a stability of the solution of equation (61) we shall use the method
of superposition of small perturbations on the state of equilibrium. To this end let us
consider the perturbed quantities

θε = θk + εϕ (t) , Ωε = εη, (63)

where θ is the solution of (61).
Now we have to write down perturbed equations (58) and (59). For this it is suffi-

ciently to provide the vectors θ and Ω in these equations by the subscripts ε. After that
it is necessary to differentiate these equations with respect to ε and to accept ε = 0. As
the result we shall get equations in variations ϕ and η.

For the sake of simplicity let us consider case (62). In such case perturbed equations
(58) and (59) take the form

A1Ω̇ε + (A3 − A1)
(
k · Ω̇ε

)
k − (A3 − A1) (k · Ωε)k× Ωε + cθε+

+ (d − c)k · θεZT (θε) · k = Lk, (64)

θ̇ε = Ωε +
1

2
θε × Ωε +

1 − gε

θ2
ε

θε × (θε × Ωε) , gε =
θε sin θε

2 (1 − cosθε)
. (65)

Expressions (63) take the form

θε =
L

d
k + εϕ, Ωε = εη, θε × k = εϕ × k. (66)

The equations in variations can be represented as

A1η̇ + (A3 − A1) (k · η̇)k + cϕ + (d − c) (k · ϕ)k+

+L
(
1 −

c

d

) [1

2
ϕ × k +

1 − g

θ
(ϕ − k · ϕk)

]
= 0,

ϕ̇ = η +
1

2

L

d
k × η − (1 − g) (η − (k × η)k) .
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These equations can be rewritten in more simple form with the help of substitution

η = ζk + y, y · k = 0; ϕ = γk + ψ, ψ · k = 0. (67)

After some transformations one can write

A3γ̈ + dγ = 0, ζ = γ̇, (68)

A1ψ̈ +

[
c

(
g2 +

L2

4d2

)
−

L2

4d
+ (1 − g) gd

]
ψ +

L

2
k × ψ = 0, (69)

where
g =

θ sin θ

2 (1 − cosθ)
, θ =

L

d
.

If the quantity |L| /d is small, i.e. |L| /d 
 1, then equation (69) can be rewritten as

A1ψ̈ +

[
c +

(c − 2d)L2

12d2

]
ψ +

L

2
k × ψ = 0. (70)

Let us look for a particular solution of these equation in the form

ψ = a exp (pt) , a = const, a · k = 0.

For the vector a we have the system[
A1

(
p2 + c +

(c − 2d) L2

12d2

)
E∗ +

L

2
k × E∗

]
· a = 0, E∗ = E − k ⊗ k.

The determinant of this system must be equal to zero[
A1

(
p2 + c +

(c − 2d)L2

12d2

)]2

+
L2

4
= 0.

It is easy to see that at least one root of this equation has a positive real part. From this
it follows that the solution of equation (70) infinitely increases. This means that the state
of equilibrium (62) or (61) is unstable for arbitrarily small quantity of external twisting
moment L. This phenomenon is well known under the name of paradox of Nikolai.

From the pure theoretical point of view it is no wonder that the state of equilibrium
is unstable. However, from the practical point of view the situation is very disagreeable.
Really, if the external torque is small, then it is supposed that the linear theory is valid.
In this case system of equations (58) and (59) can be rewritten in the form of equation

A1θ̈ + (A3 − A1) (k · θ̈)k + cθ + (d − c) (k · θ)k = Lk.

The solution of this equation has a small norm if the torque L and the norm of initial
conditions are small. Namely this way is used in the most of applied investigations.
There was no doubts that such approach is quite accurate. However, as it was shown
above, if we take into account the small quantities of the second order, then the solution
will be unstable. Is it really so? It is well-known fact [6] that the equations in variations
may give a faulty result in some cases. This means that in doubtful cases the nonlinear
analysis have to be used.
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5 Nonlinear analysis and rigorous justification of the

paradox of Nikolai

Let us consider the external torque of the kind

Mex = γL (l1k + l2P · k) , γ =
(
l21 + l22 + 2l1l2k · P · k)− 1

2 . (71)

If l1 = 1, l2 = 0, then Mex is a dead torque; if l1 = 0, l2 = 1, then Mex is a
followed (tangential) torque; if l1 = l2 = 1, then Mex is a semitangential torque. For
the elastic torque let us accept expression (47) , where C

(
θ2,k · θ) and D

(
θ2,k · θ) are

the functions of a general kind. The tensor of inertia is supposed to be transversally
isotropic with the axis of symmetry k.

For the vector of kinetic moment we have formulas (43) and (44). Let us write down
the equation of the energy balance when the external torque is defined by expression (71)

ε̇ = γL (l1k · ω + l2k · Ω) , ε =
1

2
A1ω2 +

1

2
(A3 − A1) (k · Ω)

2
+ U (θ) . (72)

From (72) it follows

ε − ε0 = L

t∫
0

γ (τ)k · (l1ω (τ) + l2Ω (τ))dτ. (73)

If the integral in the right side of equation (73) is bounded for all t, then for small |L|

the energy ε is close to the value of the initial energy ε0. In such a case the stability is
possible. If integral (73) is infinitely increasing, then we have the accumulation of energy
in the system and the stability is impossible for arbitrarily small |L| .

Let us write the equation of motion in two forms

[A1ω + (A3 − A1) (ω · k′)k′]˙+ Cθ + DZT · k = γL (l1k + l2k′) , (74)

[A1Ω + (A3 − A1) (Ω · k)k]˙+ (A3 − A1) (k · Ω) Ω × k+

+Cθ + DZ · k = γL
(
l1PT · k + l2k

)
, (75)

where ω · k′ = Ω · k, k′ = P · k.
Equations (74) and (75) are equivalent. Nevertheless from them the nontrivial result

can be found. Subtracting equation (75) from equation (74) one can get

[A1 (ω − Ω) + (A3 − A1) (Ω · k) (k′ − k)] +̇

+ (A3 − A1) (k · Ω)k× Ω + Dθ × k = γL
[
(l1 − l2)k + l2k′ − l1PT · k] .

Multiplying this equation by the vector k we shall obtain the next equation

[A1 (ω − Ω) · k + (A1 − A3)k · Ω (1 − cosϑ)]˙=

= γL (l1 − l2) (1 − cosϑ) , (76)
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where cosϑ = k · k′ = k · P · k.

Let us note that equation (76) does not contain the characteristics of the elastic
foundation. Equation (76) can be rewritten in another form. From equations (19) and
(20) it follows

ω − Ω =
(
Z−1 − Z−T

) · θ̇ = 2
1 − cosθ

θ2
θ × θ̇. (77)

The vector of turn θ can be represented in the form of the composition

θ = xk + y,y · k = 0,y = y (t)Q (ψ (t)k) · m, (78)
m · k = 0, |m| = 1, θ2 = x2 + y2.

One can prove the formulas

k ·
(
θ × θ̇

)
= k · (y × ẏ) = ψ̇y2, 1 − cosϑ =

y2 (1 − cosθ)

θ2
. (79)

Taking into account relations (77), (78) and (79) equation (76) can be rewritten in
the form

[(1 − cosϑ) F]˙= γL (l1 − l2) (1 − cosϑ) , (80)

where
F = 2A1ψ̇ + (A1 − A3)k · Ω.

Equality (80) was derived by another way and was shown to the author in the private
talk by Dr. A. Krivtsov. In fact equality (80) is due to the existence of property (26) for
the elastic torque. Let us note that the right side of equation (80) has the constant sign,
which is defined by the sign of the number L (l1 − l2). Let us suppose that L (l1 − l2) > 0.
In such a case let us choose the initial conditions such that F |t=0> 0. Equality (80) shows
to us that the function F (t) tends to infinity as t → ∞. This means that the body will
have an infinitely big velocity of precession ψ̇, i.e. state of equilibrium (61) or (62) is
unstable for arbitrarily small value of twisting torque and for any transversally isotropic
elastic foundation. Therefore the analysis on the base of the equations in variations gives
the right result. The paradox of Nikolai is due to an accumulation of energy in the
system.

6 The simplest rigid body oscillator. The total inte-

grability of the basic equations

Let us consider the simplest case of the rigid body oscillator. For this end let us accept
the next restrictions

A = AE, U = u
(
θ2
)
,

d

dθ
U = 2u′ (θ2

)
θ = c

(
θ2
)
θ. (81)

In addition let us introduce the torque of friction in the form

Mex = −bω, b = const � 0. (82)
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In such a case basic equations (55) and (56) can be written down in the form

AΩ̇ + bΩ + c
(
θ2
)
θ = 0, (83)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) , g =

θ sin θ

2 (1 − cosθ)
. (84)

It is seen that even in this simplest case the basic system is rather complicated. The
system can be simplified only in the case of the plane oscillations when

ω = Ω = θ̇, θ × Ω = 0.

If it is so, then system (83) and (84) takes the form

Aθ̈ + bθ̇ + c
(
θ2
)
θ = 0; t = 0 : θ = θ0, Ω = Ω0, θ0 × Ω0 = 0. (85)

This system can be investigated without any problems.
Let us discuss system of equations (83) and (84) in a general case. In order to

underline the difference between conventional approach and our method let us consider
both of them.

6.1 Conventional approach

Let us try to investigate system (83), (84) on the base of application of the Euler angles.
The tensor of turn can be represented [1] in the form

P (θ) = Q (ψk) · Q (ϑp) · Q (ϕk) = Q (ϑp′) · Q (βk) , (86)

where
β = ϕ + ψ, p′ = Q (ψk) · p, k · p = k · p′ = 0. (87)

The left angular velocity is determined by the formula

ω =
(
ψ̇ + ϕ̇ cosϑ

)
k + ϑ̇p′ + ϕ̇ sin ϑp′ × k. (88)

Making use expressions (7), (86), (88) and substituting them into equation (90) one
can derive the system

A
(
ψ̇ + ϕ̇ cosϑ

)
˙+ b

(
ψ̇ + ϕ̇ cosϑ

)
+

c
(
θ2
)
θ

2 sin θ
sinβ (1 + cosϑ) = 0,

A
(
ϑ̈ + ψ̇ϕ̇ sin ϑ

)
+ bϑ̇ +

c
(
θ2
)
θ

2 sin θ
sin ϑ (1 + cosβ) = 0,

A

[
(ϕ̇ sin ϑ)˙− ϕ̇ϑ̇

]
+ bϕ̇ sinϑ +

c
(
θ2
)
θ

2 sin θ
sin β sin ϑ = 0. (89)

In addition to this system we have the relations

1 + 2 cosθ = cosϑ + cosβ + cosϑ cosβ, β = ϕ + ψ.

It is not so easy to find the total solution of system (89). Let us note that represen-
tation (86) is completely admissible. However, there are many another possibilities and
the most of them will lead to the complicated equations. If we want to find the best
representation, then we have to look for this representation in the process of a solution
rather then to guess it a priori. The latter circumstances was underlined in the paper [1].
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6.2 The total integrability of the equations of the simplest rigid
body oscillator

Multiplying equation (83) by the tensor P (θ) from the left one can obtain

Aω̇ + bω + c
(
θ2
)
θ = 0. (90)

Here the identity

P · Ω̇ = (P · Ω)˙− Ṗ · Ω = ω̇ − (P × Ω) · Ω = ω̇

was taken into account.
Equation (90) is equivalent to equation (83). However from (83) and (90) the non-

trivial result follows

A (ω − Ω)˙+ b (ω − Ω) = 0 =⇒ω − Ω = (ω0 − Ω0) exp
(

−
bt

A

)
, (91)

where ω0 and Ω0 are the initial angular velocities. Expression (91) gives to us three
integrals. Now it is necessary to consider two cases

a)ω0 − Ω0 = 0, b)ω0 − Ω0 = |ω0 − Ω0| e �= 0.

In the first case we deal with the plane vibrations of the oscillator. Really, in the first
case from (91) it follows that

ω = Ω =⇒Ω × θ = 0.

The latter fact follows from (15) and (16). Thus we have equation (85). It is more
interesting to investigate the case b). From equations (15) and (16) the next relation can
be derived.

g (θ) (ω − Ω) =
1

2
θ × (ω + Ω) .

Taking into account integral (91) one can get

g (θ) exp
(

−
bt

A

)
(ω0 − Ω0) =

1

2
θ × (ω + Ω) .

Besides let us take into account the identity

1

2
θ × (ω + Ω) =

sin θ

θ
θ × θ̇.

The previous expression can be rewritten in the form

2 (1 − cosθ)

θ2
θ × θ̇ = (ω0 − Ω0) exp

(
−

bt

A

)
. (92)

From this equation one more integral follows

θ (t) · (ω0 − Ω0) = 0 =⇒ θ (t) · e = 0, (93)
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where the vector e is the vector (ω0 − Ω0) / |ω0 − Ω0|. Equation (93) shows that the
vector θ (t) can be represented in the form

θ (t) = θ (t)Q (ψe) ·m, m = θ0/θ0, m · e = 0, ψ (0) = 0. (94)

From this representation it follows

θ × θ̇ = ψ̇θ2e. (95)

Substituting (95) into (92) one can get

ψ̇ =
1 − cosθ0

1 − cosθ (t)
ψ̇0 exp

(
−

bt

A

)
, ψ̇0 > 0. (96)

Thus if we know the angle of nutation θ (t) then the angle of precession can be found
from (96). Let us derive the equation for the angle θ. For this end let us calculate the
right angular velocity

Ω =
θ̇

θ
θ +

sinθ

θ
ψ̇e× θ − (1 − cosθ) ψ̇e. (97)

Substituting expression (97) into equation (83) and projecting the obtained equation
on the vectors θ, e and e × θ one can get three scalar equations, where two of them
(projections on e and e × θ) will be identities because of equality (96). Projection on
the vector θ gives

A

[
θ̈ − sin θ

(
1 − cosθ0

1 − cosθ

)2 (
ψ̇0

)2

exp
(

−
2bt

A

)]
+ bθ̇ + c

(
θ2
)
θ = 0. (98)

If the friction is absent (b = 0) , then this equation can be solved in terms of quadratures.
The plane motions of the oscillator can be found from equation (98) when ψ̇0 = 0.
In a general case equation (98) can be studied by conventional methods of nonlinear
mechanics. Let us note that even for small θ equation (98) is nonlinear one.

Aθ̈ + bθ̇ +

[
c (0) − A

(
θ0

θ

)4

ψ̇2
0 exp

(
−

2bt

A

)]
θ = 0. (99)

In contrast with it for small turns system of equations (83) and (84) can be linearized
and we shall get the linear equation

Aθ̈ + bθ̇ + c (0) θ = 0. (100)

Nonlinear equation (99) can be derived from equation (100) if one take into account
that θ = |θ| . If the friction is absent (b = 0) then equation (98) has an exact solution

θ = θ0 = const, ψ̇ = ψ̇0 = const,
(
ψ̇
)2

=
c
(
θ2

0

)
θ0

A sin θ0

. (101)

This solution is called a regular precession, which will be considered in the next
section. If the friction is present, then for the big times equation (98) transforms to
equation (85).
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Let us compare two described approaches. The first approach is defined by represen-
tation (86) of the turn-tensor, where the unit vectors k and p (k · p = 0) were chosen a
priori. This means that for angles ψ, ϑ, ϕ and the velocities ψ̇, ϑ̇, ϕ̇ we have to provide
the arbitrary initial conditions. In other words we have to look for a general solution of
the system (89). It is not known if it is possible.

In the second approach the representation of the turn-tensor has a special form

P = Q (θ) = Q [θQ (ψe) ·m] = Q (ψe) ·Q (θm) · QT (ψe) . (102)

Here we used representation (94) for the vector of turn and the unit vectors e and
m, which were found in the process of solution. Representation (102) contains only two
angles θ and ψ, but the unit vectors e, m are chosen by a special manner. Representation
(86) contains three angles ψ, ϑ and ϕ but the unit vectors k and p can be any orthogonal
vectors. Let us accept the relation ϕ = −ψ, i.e. β = 0, in representation (86). In such
case system (89) takes the form (β = 0)

A
[
ψ̇ (1 − cosθ)

]
˙+ bψ̇ (1 − cosθ) = 0,

A
(
θ̈ − ψ̇2 sinθ

)
+ bϑ̇ + c

(
θ2
)
θ = 0,

A

[(
ψ̇ sin θ

)
− θ̇ψ̇

]
+ bψ̇ sin θ = 0.

The first equation of this system gives to us integral (96). The third equation is an
identity if we take into account the first equation. At last, the second equation coincides
with equation (98). Thus system (89) has a particular solution coinciding with the found
above solution. However when using representation (86) this solution does not allow to
satisfy all initial conditions since the vectors k and p have the preassigned directions.

Let us turn back to equation (98). A general analysis of this equation can be made by
means of conventional methods. Because of this there is no need to do it in this paper.

7 The regular precession and the equations in varia-
tions

Let us consider the body with the transversally isotropic tensor of inertia. The elastic
foundation is supposed to be transversally isotropic as well. The equations of motion are
given by expressions (53), (54) and expression (47) for the elastic torque.

One can write down

[A1ω + (A3 − A1) (k′ · ω)k′]˙+ Cθ + DZT · k = 0, k′ = P · k, (103)

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) , (104)

where the function C and D are defined by expressions (48).
A particular solution of system (103), (104) can be represented in the form

θ = ϑp′, p′ = Q (ψk) · p, P = Q (ϑp′) , p · k = 0. (105)



A General Model of Rigid Body Oscillator 61

Motion (105) is called a regular precession if the restrictions

ϑ = const, ψ̇ = const (106)

hold good. The left angular velocity is defined in such case by the formula

ω = Q (ψk) · ω0, ω0 = ψ̇ [(1 − cosϑ)k + sin ϑk × p] = const. (107)

We see that the vector ω is a precession of the vector ω0 around the axis k. Also
there are properties

θ · ω = θ · Ω = 0, k · θ = 0.

This means that the vector of turn is orthogonal to the vector of angular velocity. In
addition let us accept the restriction

D
(
θ2,k · θ) |k·θ=0=

∂

∂ (k · θ)
U
(
θ2,k · θ) |k·θ=0= 0,

which is satisfied for the most kinds of elastic energy. After substitution (105)–(107) into
equations (103), (104) we shall get the identities if the equality

ψ̇2 =
C
(
ϑ2, 0

)
ϑ

sinϑ [A3 (1 − cosϑ) + A1 cosϑ]
(108)

is valid. If A1 = A3 = A, then we have expression (101). Thus expressions (105)–(108)
give to us the exact solution of system (103)–(104).

Now we must investigate a stability of solution (105)–(108). Generally it is rather
cumbersome process. In order to simplify it let us accept

A = A1 = A3, D
(
θ2,k · θ) = 0, C

(
θ2,k · θ) = c = const. (109)

This means that the tensor of inertia and the elastic foundation are supposed to be
isotropic. Under these assumptions perturbed equations of motion (103)–(104) take the
form

Aω̇ε + cθε = 0,

θ̇ε = ωε −
1

2
θε × ωε +

1 − gε

θ2
ε

θε × (θε × ωε) . (110)

The perturbed quantities ωε and θε can be represented in the form

ωε = ω + εη, θε = θ + εϕ, |ε| 
 1, (111)

where ω and θ are defined by expressions (105)–(108). The quantities η and ϕ are
called the first variations of ω and θ respectively. If we shall use representation (111),
then we get the equations for η and ϕ with the varying coefficients. Because of this it
will be better to represent the functions ωε and θε in the next form

ωε = Q (ψk) · (ω0 + εη) , θε = Q (ψk) · (ϑp + εϕ) , (112)

where the function ψ is defined by (108).
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It is easy to calculate

ω̇ε = Q (ψk) ·
[
ψ̇k × ω0 + ε

(
η̇ + ψ̇k × η

)]
,

θ̇ε = Q (ψk) ·
[
ψ̇ϑk × p + ε

(
ϕ̇ + ψ̇k × ϕ

)]
.

From equations (110) the next equations for variations η and ϕ can be derived

A
(
η̇ + ψ̇k × η

)
+ cϕ = 0,

ϕ̇ + ψ̇k × ϕ =
ϑ sin ϑ

2 (1 − cosϑ)
η −

ϑ − sin ϑ

2 (1 − cosϑ)
(p · ϕ)ω0 −

1

2
ϕ × ω0 −

−
1

2
ϑp× η +

2 (1 − cosϑ) − ϑ sin ϑ

2ϑ (1 − cosϑ)
(ϕ · ω0 + ϑp× η)p,

where ψ̇ is determined by (108) and ϑ = const. This system of linear differential
equations with constant coefficients can be investigated by conventional methods. Our
aim was only to show the derivation of the equations in variations.

Appendix 1. Elastic energy of foundation

In the section 3 there was given the definition of an elastic energy in terms of poten-
tial function U (θ). This function was interpreted as the elastic energy of foundation.
However in the nonlinear theory of elasticity the concept of elastic energy has a uniquely
determined meaning. Thus it is necessary to show that there is no contradiction between
these two concepts.

The foundation is supposed to be an elastic body. The boundary of the foundation
is the surface S = S1

⋃
S2

⋃
S3. The part S1 of the surface S is fixed. The part S2 is a

free surface. The part S3 is the interface between the foundation and the rigid body.
Let us write the equation of the energy balance for the system “foundation plus rigid

body”
K̇ + U̇ = 0, (113)

where K is the kinetic energy of rigid body, since the foundation is supposed to be
inertialess; U is the total intrinsic energy, i.e. elastic energy or energy of deformation,
of the elastic foundation, since the intrinsic energy of rigid body has a constant value.
The right side of (113) is equal to zero because the power of external forces is absent.

Now let us write the equation of the energy balance for rigid body only. The external
forces, acting on the body, are generating by the vector of stress acting on the part S3

of the boundary. Thus one can write

K̇ = −

∫
N (P) · τ (P) · Ṙ (P)dS (P) , P ∈ S3, (114)

where R (P) is the vector of position of the point P of the surface S3; the integration is
going over the surface S3; the vector N is the external unit normal to the surface S3; the
tensor τ is the Cauchy stress tensor.
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In according with the basic theorem of kinematics of rigid body we have

R (P) = R (Q) + P (t) · (r (P) − r (Q)) , (115)

where Q is the pole, r (P) and r (Q) are the vectors of position of points P and Q in the
reference position. From equation (115) it follows

v (P) = v (Q) + ω (t) × [R (P) − R (Q)] . (116)

Substituting expression (116) into equation (114) one can get

K̇ = F · v (Q) + Me · ω, (117)

where
F = −

∫
N (P) · τ (P)dS (P) ,

Me = −

∫
[R (P) − R (Q)] × τ (P) · N (P) dS (P) .

Making use of (113) equation (117) can be rewritten in the form

F · v (Q) + Me · ω = −U̇ (R (Q) , θ) , (118)

where the vector θ is the vector of turn of the rigid body and henceforth of the surface
S3. If the point Q is fixed, then we have definition (21) or (46). Thus the potential U in
expression (46) is the elastic energy of foundation.

Appendix 2. A derivation of the representation for the

integrating tensor

Calculating the trace from the both sides of the Poisson equation (9) one can obtain

(trQ)˙= tr (ω × Q) = −2
sin θ

θ
θ · ω, tr (a ⊗ b) = a · b.

Taking into account the equality

trQ = 1 + 2 cos θ

from the previous equation it is easy to derive

θθ̇ = θ · θ̇ = θ · ω. (119)

Multiplying equation (9) by the vector θ one can get

Q̇ · θ = ω × θ = −R · ω
Making use the identity

Q̇ · θ = (Q · θ)˙− Q · θ̇ = − (Q − E) · θ̇
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and equation (3) the previous equation can be rewritten in the form(
sinθ

θ
R +

1 − cosθ

θ2
R2

)
· θ̇ = R · ω.

A general solution of this equation has the form

ω = λθ +

(
sin θ

θ
E +

1 − cosθ

θ2
R
)
· θ̇, (120)

where the scalar function λ must be found.
Multiplying equation (120) by the vector θ and taking into account equality (119)

we have
λ =

θ − sin θ

θ3
θ · θ̇.

Equation (120) takes the form

ω =

[
E +

1 − cosθ

θ2
R +

θ − sin θ

θ3
R2

]
· θ̇ = Z−1 · θ̇. (121)

Here we use the identity
R2 = θ ⊗ θ − θ2E.

Expression (121) gives to us representation (20). Thus we had found the tensor Z−1.
In order to calculate the tensor Z we must take into account that the tensor Z is the
isotropic tensor function of the tensor R. This means that the next representation is
valid

Z = αE + βR + γR2, Z · Z−1 = E.

From this it follows

α = 1, β = −
1

2
, γ =

1 − g

θ2
, g =

θ sinθ

2 (1 − cosθ)
.

That is expression (11).
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Ferromagnets and Kelvin’s Medium:

Basic Equations and Magnetoacoustic Resonance∗

Abstract

The nonlinear constitutive equations of Kelvin’s medium (polar medium con-
sisting of rotating particles) are obtained. It is shown that they include the known
constitutive equations of ferromagnetic insulators as a particular case. Another way
of taking the couplings of magnetic and elastic subsystems into account is suggested.
Wave processes are investigated from this point of view. All results are interpreted
both in terms of mechanical medium and ferromagnets.

1 Introduction

There are a lot of papers devoted to theories of elastic polar media. The first investigation
in this field was developed by E. Cosserat and F. Cosserat [1]. Each particle of such
a medium is a small rigid body (a point body). In [2], [3], [4] the linear theory for
infinitesimal turns and displacements is considered.

In this paper we obtain a general form for nonlinear constitutive equations for
Cosserat medium. Then we consider a special case of this medium — Kelvin’s medium.
Kelvin’s medium is an elastic polar medium consisting of rotating particles with axial
symmetry (Fig. 1). These particles can oscillate and rotate in general ways. Point bod-
ies of this medium contrary to Cosserat continuum may have large angular velocities;
displacements and turns may be finite. The idea to consider such a continuum was
suggested by Lord Kelvin: “Kelvin imagined a model of a quasi-rigid ether built from
gyrostates. The problem was to find a system resisting only to deformations concerned
with rotation” [5].

We suppose that internal forces in this continuum do not depend on the angles of own
rotation of particles or angular velocities of own rotation. We obtain the constitutive
equations of this medium using the law of balance of energy via a phenomenological
method suggested in [6]. This method allows to get nonlinear constitutive equations for
elastic polar medium with particles of general kind, i.e. for generalized Cosserat medium.

∗Grekova E.F., Zhilin P.A. Ferromagnets and Kelvin’s Medium: Basic Equations and Magnetoacoustic
Resonance // Proceedings of the XXV-XXIV Summer Schools “Nonlinear Oscillations in Mechanical
Systems”, volume 1, St. Petersburg, Russia, 1998. P. 259–281.
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Figure 1: Kelvin’s medium

We obtain these equations in section 2. Afterwards we take into account restrictions given
by axial symmetry of particles and get constitutive equations of Kelvin’s medium. We
found these equations to be analogous to the constitutive equations of saturated elastic
ferromagnetic insulators (see [7]) and to the constitutive equations in the non-classical
theory of elastic shells [6]. There is also an exact analogy between dynamic equations of
ferromagnets [7] and Kelvin’s medium. This carries a similarity of wave processes in both
media. We use the most general way of taking into account the coupling of translational
and angular deformations in the function of strain energy. This allows us to describe
phenomena analogous to magnetoacoustic resonance in ferromagnetic materials.

2 Dynamic and constitutive equations of Kelvin’s

medium

2.1 Kinematics of Kelvin’s medium

We shall consider a deformable medium consisting of rotating particles with rotational
symmetry having both translational and angular degrees of freedom.

Let qs be material coordinates of a point of this medium, r(qs) and R(qs) are
radius vectors of centre of mass of a point body in the initial and actual configuration
respectively. [Here and further Roman subscripts take values 1,2,3 and Greek ones 1,2
and we shall employ the usual summation convention.] Let us associate with each point
of this continuum an orthonormal vector basis Dk(qs) that is “frozen” into a point body,
where m ≡ D3 is a unit vector of an axis of a point body. In the initial configuration
let Dk = dk, m0 ≡ d3. The dual basis Dk (Dk · Di = δk

i ) coincides with Dk. We may
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introduce a turn-tensor P = Dk⊗dk that describes the turn of a point body. One can
see that Dk = P · dk. It is easy to show that P ·P� = E, where E is a unit tensor, and
that detP = 1. The turn-tensor can be represented in the form:

P(t) = P3(ψm0) ·P2(ϑl0) · P1(ϕm0), (1)

where P3(ψm0) = (1 − cosψ)m0⊗m0 + cosψE + sin ψm0 × E is a turn-tensor about
an axis m0 about an angle ψ etc., l0 and m0 are orthonormal vectors, ψ, ϑ, ϕ are angles
of precession, nutation and own rotation respectively. We see that
m0 · P3 = m0 = P3 ·m0 etc.

Let us denote ri =
∂r
∂qi

≡ ∂ir and Ri =
∂R
∂qi

≡ ∂iR. Nabla operators in the initial

and actual configuration are defined by
◦
∇ = ri∂i and ∇ = Ri∂i respectively, where ri

and Ri are corresponding dual bases. We suppose
◦
∇m0 = 0 and put r3 = m0.

Let us introduce the following notation:

u = R − r is the translational displacement of a centre of mass of a point body;

v = Ṙ is the velocity of a centre of mass of a point body;

ω(R, t) is the angular velocity of a point body;

it can be defined by Poisson equation

Ṗ = ω × P; (2)

and can be calculated as
ω = −[Ṗ · P�]×/2; (3)

or as
ω = ψ̇m0 + ϑ̇P3 · l0 + ϕ̇P3 ·P2 ·m0 = ψ̇m0 + ϑ̇l + ϕ̇m, (4)

where l = P3 · l0. One can see that Ṗ3 = ψ̇m0 × P3 etc., and that
l ·m = l0 · P�

3 · P3 · P2 ·m0 = l0 ·m0 = 0.
Let ut write an analog of Poisson equation for coordinate qi instead of time t:

∂iP = Φi × P, (5)

here Φi can be found as
Φi = −[∂iP · P�]×/2; (6)

or as

Φi = ∂iψm0 + ∂iϑP3 · l0 + ∂iϕP3 ·P2 · m0 = ∂iψm0 + ∂iϑl + ∂iϕm. (7)

Further we shall use relation

∂iω = Φ̇i + Φi × ω (8)



Ferromagnets and Kelvin’s Medium 69

Proof:

∂iω = −∂i[Ṗ ·P�]×/2 = −[(∂iṖ) ·P� + Ṗ · ∂iP�]×/2 =

= −[(Φi × P)̇ ·P� + ω × P · (Φi × P)�]×/2 =

= −[Φ̇i × E + Φi × (ω × P) · P� − ω × P ·P� × Φi]×/2 =

= −[Φ̇i × E + Φi × (ω × E) − ω × E× Φi]×/2 = Φ̇i + Φi × ω. (9)

Here we used (3) and (6).
Let us introduce strain tensors

A =
◦
∇R ·P,

K = ri⊗Φi ·P.
(10)

Tensor A is responsible both for translational and angular deformation, and K is deter-
mined only by angular strain; using (7) we may get

K =
◦
∇ψm0 ·P +

◦
∇ϑl · P +

◦
∇ϕm0; (11)

one can show that K = −(
◦
∇P · P�) · · (E× P)/2.

The density of kinetic energy is defined by

K =
1

2
(v · v + ω · Θ · ω), (12)

where Θ = P · Θ0 · P� is the density of central inertia tensor of a point body in the
actual configuration, Θ0 is the density of central inertia tensor of a point body in the
initial configuration; since point bodies have an axial symmetry,

Θ = λm⊗m + µ(E − m⊗m). (13)

The density of impulse of the medium is given by the formula

K1 =
∂K

∂v
= v, (14)

and the density of kinetic moment calculated relatively to the origin is

K2 =
∂K

∂ω
+ R × K1 = Θ · ω + R × v. (15)

2.2 Stress and couple tensors. Euler’s laws of dynamics.

We denote

ρ (R, t) is the mass density in the actual configuration;

τ(R, t) is Cauchy stress-tensor; τ(n) = n · τ, where τ(n) is stress vector acting upon the
elementary surface, n is the normal to this surface;
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µ(R, t) is the couple tensor which can be introduced analogously to the stress-tensor;
µ(n) = n · µ, where µ(n) is the moment acting upon the elementary surface with
the normal n;

Q(R, t) is the density of the external force;

L(R, t) is the density of the external moment;

U(R, t) is the density of the strain energy.

Euler’s first law of dynamics (balance of force) for a part of continuum �V bounded
by a surfase Σ is

d

dt

∫
�V

ρK1 dV =

∫
�V

ρQdV +

∫
Σ

τ(n) dΣ. (16)

It can be rewritten in a local form

∇ · τ + ρQ = ρ
..
u. (17)

Euler’s second law of dynamics (balance of moment) for a part of continuum �V

bounded by a surfase Σ is

d

dt

∫
�V

ρK2 dV =

∫
�V

ρ (L + R × Q)dV +

∫
Σ

(µ(n) + R × τ(n))dΣ. (18)

One can rewrite it in a local form using Euler’s first law of dynamics (16)

∇ · µ + τ× + ρL = ρ (Θ · ω) .̇ (19)

If we consider the case when the densities of moments of inertia λ and µ are infinites-
imal but the angular velocity of own rotation ϕ̇ is large so that λϕ̇ = O(1), (19) can be
rewritten as

∇ · µ + τ× + ρL = ρω × (Θ · ω) + o (1). (20)

Proof:

(Θ · ω)̇ = (P · Θ0 · P� · ω)̇
(2)
= (ω × P · Θ0 ·P� − P · Θ0 ·P� × ω) · ω+

+ P · Θ0 ·P� · ω̇ = ω × (Θ · ω) + Θ · ω̇ (21)

Since we suppose all interactions to be potential, there can not exist any internal stresses
that induce own rotation of a point body, and ϕ̈ is of the same order as L. Taking this
in account we may write

Θ · ω̇ (4)
= Θ · (ψ̈m0 + ϑ̈l + ϕ̈m + ϑ̇ψ̇m0 × l + ϕ̇ ω × m)

(13)
=

= (λm ⊗ m + µ(E − m ⊗ m)) · (ψ̈m0 + ϑ̈l + ϕ̈m + ϑ̇ψ̇m0 × l + ϕ̇ω×m) =

= µϕ̇ ω × m + o (1)
(4)
= µϕ̇(ψ̇m0 × m + ϑ̇l × m) + o (1) =

= O(1)(ψ̇m0 × m + ϑ̇l × m) + o (1) = o (1) (22)
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It is easy to show that under these conditions ω × Θ · ω = O (1). Indeed,

ω×Θ·ω (13)
= ω×(λ−µ)m⊗m ·ω+µω×ω

(4)
= (λ−µ)(ϕ̇+ψ̇m0 ·m)(ψ̇m0×m+ ϑ̇l×m)

which is O (1) in general case since λϕ̇ = O (1).

Thus we have (Θ · ω)̇ = ω × (Θ · ω) + o (1) and (19) may be rewritten as (20)
provided λ = o (1), µ = o (1), λϕ̇ = O (1), ψ̇ = O (1), ϑ̇ = O (1).

NB: Under these conditions

Θ · ω = λϕ̇m + Θ · (ψ̇m0 + ϑ̇l) = λϕ̇m + o (1). (23)

2.3 Nonlinear constitutive equations

2.3.1 Nonlinear constitutive equations for generalized Cosserat medium

We obtain the nonlinear constitutive equations for elastic polar medium via the method
used in the theory of shells (P.A. Zhilin, [6]).

The equation for balance of energy for a polar medium is:

d

dt

∫
�V

ρ (K + U)dV =

∫
�V

ρ (Q · v + L · ω)dV +

∫
Σ

(τ(n) · v + µ(n) · ω)dΣ. (24)

Its local form is
ρ U̇ = τ� · · ∇v − τ× · ω + µ� · · ∇ω. (25)

It can be rewritten in the form

ρ U̇ = τ�
∗ · · Ȧ + µ�

∗ · · K̇, (26)

where τ∗ =
◦
∇R−� · τ · P is the energetical stress tensor, µ∗ =

◦
∇R−� · µ · P is the

energetical couple tensor.
Proof:

τ�
∗ ·· Ȧ+µ�

∗ ·· K̇ (10)
= (P� ·τ� ·(

◦
∇R)−1)·· (

◦
∇R·P)̇ +(P� ·µ� ·(

◦
∇R)−1)·· (ri⊗Φi ·P)̇

(2)
=

= (P� · τ� · (
◦
∇R)−1) · · (

◦
∇v · P) + (P� · τ� · (

◦
∇R)−1) · · (

◦
∇R · (ω × P))+

+ (P� · µ� · (
◦
∇R)−1) · · (ri ⊗ Φ̇i ·P) + (P� · µ� · (

◦
∇R)−1) · · (ri ⊗ Φi · (ω × P)) =

= τ� · · ((
◦
∇R)−1 ·

◦
∇v) + τ� · · ((

◦
∇R)−1 ·

◦
∇R · (ω × E)) + µ� · · ((

◦
∇R)−1 · ri ⊗ Φ̇i)+

+µ� ·· ((
◦
∇R)−1 ·ri⊗Φ̇i ·(ω×E)) = τ� ·· ∇v+τ� ·· (ω×E)+µ� ··Ri⊗(Φ̇i+Φi×ω)

(8)
=

= τ� · · ∇v − τ× · ω + µ� · · ∇ω (27)

We define elastic medium as a medium where the density of strain energy depends
only on the deformation, i.e. U = U(A,K).
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Formula (26) allows us to get correct nonlinear constitutive equations of an elastic
polar medium [6]:

τ = ρ
◦
∇R� · ∂U

∂A
·P�, (28)

µ = ρ
◦
∇R� · ∂U

∂K
·P�, (29)

where U = U(A,K).

2.3.2 Nonlinear constitutive equations for Kelvin’s medium

Now let us take into account that Kelvin’s medium is a medium of a special kind. In
this case strain energy U is not a function of general kind in A and K, since we assume
that U(R) does not depend on ϕ or ∇ϕ. Let us search for functions in A and K (strain
tensors) such that we satisfy these restrictions whenever U depends only on these tensors.
We shall use mathematical methods that one can find in [9].

The equation
∂U

∂ϕ
= 0 (30)

can be rewritten as(
∂U

∂A

)�
· · (A × m0) +

(
∂U

∂K

)�
· · (K × m0) = 0. (31)

Characteristic equations for (31) are

∂A
∂ϕ

= A × m0,
∂K
∂ϕ

= K× m0. (32)

Density of strain energy U is a function of first integrals of (32). These integrals are
strain tensors for medium under consideration. In the shell theory (P.A. Zhilin, [6]), the
above system of equations occurs because own rotation of a shell fibre must not influence
the energy of deformation. In case of a shell, the system has order 12 because we consider
a shell to be a 2D object. In case of a 3D continuum, the system has order 18.

There are various possibilities in choosing the set of first integrals of (32), i.e. strain
tensors of Kelvin’s medium:

1. This set of functions includes all first integrals of (32):

E = (A · A� − E)/2 = (
◦
∇R ·

◦
∇R� − E)/2,

F = K · ã ·A� = (
◦
∇ψ⊗m0 +

◦
∇ϑ⊗l) · P · ã ·P� ·

◦
∇R�,

γ = A ·m0 =
◦
∇R · m,

ξ = K · m0

(11)
=

◦
∇ψ cosϑ +

◦
∇ϕ,

(33)

where l = P·l0 and we can choose either ã = E−m0⊗m0 or ã = E×m0. We see that E is
Cauchy–Green strain tensor. Tensor F corresponds to the “mixed” translational-angular
strain.
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We see that in (33) only vector ξ depends on ∇ϕ. Thus we conclude that U does not
depend on ξ.

From (28), (29) we get the corresponding constitutive equations:

τ=
◦
∇R� ·ρ

(
∂U

∂E
·A+

∂U

∂γ
⊗m0+

(
∂U

∂F

)�
·K·ã�

)
·P�,

µ=
◦
∇R� ·ρ ∂U

∂F
· A · ã� · P�,

U = U(E,F, γ).

(34)

2. One can suggest another set of first integrals for (32):

Φ = K · a · K� = sin2 ϑ
◦
∇ψ⊗

◦
∇ψ +

◦
∇ϑ⊗

◦
∇ϑ,

E, α = m0 ·F ·m0, γ, ξ,
(35)

where a = E − m0⊗m0. Here Φ is responsible for angular deformations (like E for
translational strain), and α corresponds to the “mixed” kind of deformation.

Omitting ξ from this set for the reason mentioned above, we obtain the following
constitutive equations:

τ=
◦
∇R� ·ρ

(
∂U

∂E
·A+

∂U

∂γ
⊗m0+

∂U

∂α
m0⊗m0 ·K·a

)
·P�,

µ=
◦
∇R� ·ρ

(
2

∂U

∂Φ
· K · a +

∂U

∂α
m0⊗m0 ·A · a

)
·P�,

U=U(E, Φ, γ, α).

(36)

Of course these two variants are not the only ones possible; in fact, there is an infinite
amount of sets of first integrals of (32).

Set (33) is a set of independent integrals of (32) in the case of shells. In the case under
consideration, (33) as well as (35) include all independent integrals and some dependent
ones. There are many ways of eliminating dependent functions. For example, this is a
set of independent integrals:

E1 = E − E · ·m0⊗m0⊗m0⊗m0, F · a, γ, ξ. (37)

We also can consider another set of independent integrals:

E1, Φ1 = Φ − Φ · ·m0⊗m0⊗m0⊗m0, α, γ, ξ. (38)

The density of strain energy U depends only on these functions. Excluding ξ from these
sets we have U = U(E1,F · a, γ) or U = U(E1, Φ1, γ, α).

Corresponding to (37) and (38), the constitutive equations are:

τ=
◦
∇R� ·ρ

(
∂U

∂E1

·A+
∂U

∂γ
⊗m0+

(
∂U

∂F·a
)�

·K·ã�
)
·P�,

µ=
◦
∇R� ·ρ ∂U

∂F · a · a · A · ã� · P�,

U = U(E1,F · a, γ)

(39)
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and

τ=
◦
∇R� ·ρ

(
∂U

∂E1

·A+
∂U

∂γ
⊗m0+

∂U

∂α
m0⊗m0 ·K·a

)
·P�,

µ=
◦
∇R� ·ρ

(
2

∂U

∂Φ1

· K · a +
∂U

∂α
m0⊗m0 · A · a

)
·P�,

U = U(E1, Φ1, γ, α).

(40)

respectively.
It is possible to use any of (33), (35), (37), (38) as strain tensors. If we use (33) or

(35), twice or more do we take into account dependence U on certain kinds of strain.
If we use (37) or (38) and consider the simplest nonlinear theory (taking U to be the
quadratic form of the strain tensors), U will depend on chosen strain tensors (37) or (38)
in a simple way, and on other (dependent) strain tensors in a complicated way. The
latter seems to be less convenient.

NB: Set of the functions (33) as well as (35) includes all independent kinds of de-
formation that induce stresses in Kelvin’s medium. If U depends of any other kind of
deformation, the latter can be expressed as a function of strain tensors (33) or (35). If
we omit α from (33), this set will not contain all independent strain tensors. Tensor
F in (33) and α in (35) are special “mixed” kinds of deformation that depend on the
product of the translational displacements gradient and the gradient of a turn-tensor of
a point body. If U depends on this kind of deformation, this is sufficient for existence of
a coupling between translational and angular displacements.

2.3.3 Restrictions on the stress and couple tensors for Kelvin’s medium

The density of strain energy in Kelvin’s medium has to satisfy restrictions
∂U

∂ϕ
= 0 and

∂U

∂∇ϕ
= 0. In the subsection above we have rewritten these restrictions in terms of

strain energy and strain tensors. Now let us get another form for them in terms of stress
tensors.

The fact that internal stresses in Kelvin’s medium can not be induced by a gradient
of own rotation of its particles having axial symmetry can be rewritten as µ · m = 0.
Indeed, using (29) we may write

µ ·m = ρ
◦
∇R� · ∂U

∂K
· P� ·m = ρ

◦
∇R� · ∂U

∂K
·m0 =

= ρ
◦
∇R� · ∂U

∂K ·m0

= ρ
◦
∇R� · ∂U

∂ξ
= 0, (41)

since ξ =
◦
∇ψ cosθ +

◦
∇ϕ. Thus we see that

∂U

∂∇ϕ
= 0 ⇐⇒ µ ·m = 0. (42)

Our assumption
∂U

∂ϕ
= 0 involves the analog to the “6th balance equation” in the

theory of shells [6]:
τ× · m = µ� · · ∇m. (43)
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This can be got from (34) or (36), but it is more easy to get it directly from (28), (29).
Let us transform the left-hand side of (43):

τ× ·m (28)
= − ρ (P ·

(
∂U

∂A

)�
·

◦
∇R) · · (E× m) = −ρ

(
∂U

∂A

)�
· · ((

◦
∇R × m) ·P) =

= −ρ

(
∂U

∂A

)�
· · ((

◦
∇R · P) × (P� ·m))

(10)
= − ρ

(
∂U

∂A

)�
· · (A × m0). (44)

Now we shall transform the right-hand side of (43):

µ� · · ∇m
(29)
= ρ (P ·

(
∂U

∂K

)�
·
◦
∇R) · · ∇m

(5)
= ρ (P ·

(
∂U

∂K

)�
·rs⊗Rs) · · (Ri⊗Φi×m) =

= ρ

(
∂U

∂K

)�
· · (ri⊗(Φi × m) · P) = ρ

(
∂U

∂K

)�
· · (ri⊗(P� · Φi) × (P� ·m)) =

= ρ

(
∂U

∂K

)�
· · ((ri⊗Φi · P) × m0)

(10)
= ρ

(
∂U

∂K

)�
· · (K × m0). (45)

Thus we have

µ� · · ∇m − τ× · m = ρ

(
∂U

∂K

)�
· · (K × m0) + ρ

(
∂U

∂A

)�
· · (A× m0) =

= ρ

(
∂U

∂K

)�
· · ∂K

∂ϕ
+ ρ

(
∂U

∂A

)�
· · ∂A

∂ϕ
= ρ

∂U

∂ϕ
, (46)

and we may conclude that

∂U

∂ϕ
= 0 ⇐⇒ τ× ·m = µ� · · ∇m. (47)

At the same time in general case τ× · m �= 0.
If U = U(E, Φ, γ), i.e. U does not depend on α, formula (36) yields

τ× · m = µ� · · ∇m = 0, (48)

but if we assume this, we lose the dependence on one of the kinds of deformations that
can exist and is not forbidden by thermodynamics.

Later it will be shown that (48) is valid in the linear theory. It means that the linear
theory can not take into account dependence of strain energy on all kinds of “mixed”
deformation, i.e. describe completely an interaction between angular and translational
subsystems.

NB: The angular velocity of own rotation ϕ̇ can not be changed by any internal
forces or moments since they do not perform mechanical work on own rotation of the
body. If external body moment has no projection on the axis m of a point body, ϕ̇ does
not depend on time and can be considered a constant of the medium.
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2.4 Linear constitutive equations

Let us assume that in the initial configuration stresses are equal to zero, and that
◦
∇m0 =

0. Let angles of nutation and translational displacements to be infinitesimal, i.e.

P ≈ (E + θ × E) ·P1(ϕm0), θ = o(1), u = R − r = o(1). (49)

It is possible to obtain the linear theory by different ways. The simplest one is to
expand the law of energy balance (25) and to require independence ρU̇ on the angular
velocity of own rotation ϕ̇. After that one will obtain the linear analog for (26) and lin-
earized restrictions (47), (42). It gives the possibility to get linear constitutive equations.
It was done in [10].

We shall obtain the linear theory from the nonlinear one. We shall use notation [·]n
the term of order n in u, θ. One can see that [A]0 = P1(ϕm0), [K]0 = 0, and

[A]1 = g · P1(ϕm0), [K]1 = f ·P1(ϕm0), g =
◦
∇u + θ × E, f =

◦
∇θ. (50)

We shall expand nonlinear constitutive equations (34) with ã = a.

[τ]0 = ρ0

([
∂U

∂E

]
0

+

[
∂U

∂γ

]
0

⊗m0

)
, (51)

[µ]0 = ρ0

[
∂U

∂F

]
0

· a. (52)

We assume that internal stresses are equal to zero in the initial configuration. Thus
we have to require [τ]0 = 0, [µ]0 = 0 and we conclude that

[
∂U

∂E

]
0

+

[
∂U

∂γ

]
0

⊗m0 = 0,

[
∂U

∂F

]
0

· a = 0. (53)

Taking (53), (50) into account we continue to expand (34):

[τ]1 = ρ0

([
∂U

∂E

]
1

+

[
∂U

∂E

]
0

· g +

[
∂U

∂γ

]
1

⊗m0 +

[(
∂U

∂F

)�]
0

· f · a
)

, (54)

[µ]1 = ρ0

([
∂U

∂F

]
1

+

[
∂U

∂F

]
0

· g
)
· a. (55)

Assuming U to be sufficiently smooth in a neighbourhood of initial configuration, having
done some calculations we obtain linear constitutive equations:

τ = (4X · ·g + 4Y · · f)�,

µ = (g · · 4Y + 4Z · · f)�,
(56)

Here 4X = Xmnklrmrnrkrl,
4Y = Ymnαlrmrnrαrl, and 4Z = Zαmβlrαrmrβrl are
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tensors of elastic constants:

4X =

[
∂2U

∂E2

]
0

+

[
∂

∂E
⊗(m0

∂U

∂γ
)

]
0

+ m0

[
∂

∂γ

∂U

∂E

]
0

+ m0

[
∂

∂γ
(m0⊗∂U

∂γ
)

]
0

+

+ e0rk⊗m0⊗rk⊗m0,

4Y =

[
∂2U

∂εmn∂Fkα

]
0

rm⊗rn⊗rα⊗rk + m0⊗
[

∂2U

∂γs∂Fkα

]
0

rs⊗rα⊗rk+

+ rα⊗m0⊗rα⊗f0,

4Z =

[
∂2U

∂Fmα∂Fkβ

]
0

rα⊗rm⊗rβ⊗rk,

(57)

where
[
∂U

∂γ

]
0

= −e0m0,
[
∂U

∂F

]
0

= f0⊗m0 (this can be obtained from (53) taking into

account E = E�).
The linear approximation for 6th balance equation (47) coincides with linearized (48),

because we assume that in the initial configuration
◦
∇m0 = 0, and hence the right-hand

side of nonlinear 6th balance equation (43) is equal to zero in the linear approximation.
Thus we see that linearized restrictions (47), (42) look as

[τ×]1 · m0 = 0, [µ]1 ·m0 = 0. (58)

The restrictions on the tensors of elastic moduli following from (58) are:

m0 · (ε · · 4X) = 0,

m0 · (ε · · 4Y) = 0,
(59)

where ε = −E × E. One can see that tensors 4X, 4Y, 4Z satisfy (59), and there are no
other restrictions for their components.

Thus we can state that stress and couple tensors in the linear theory are determined
by

[τ]1 = ρ0

∂U

∂g
, [µ]1 = ρ0

∂U

∂f
, (60)

where the expression for strain energy in the linear theory is

ρ0U =
1

2
g · · 4X · ·g + g · · 4Y · · f +

1

2
f · · 4Z · · f =

=
1

2

(
gS · · 4T · ·gS + gA · · 4U · ·gA

)
+ gS · · 4W · ·gA+

+ gS · · 4H · · f + gA · · 4N · · f +
1

2
f · · 4Z · · f .

(61)

Here T,U,W,H,N are tensors of elastic constants which are convenient to use. Tensors
Y = H+N, U, and W are responsible for the coupling between angular and translational
displacements.
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We can find expressions (58)–(61) in [10], where the linear theory of medium under
consideration is proposed.

From the formal point of view one can linearize (36) as well as (34) or any other
variants of nonlinear constitutive equations obtained by the method described above for
different systems of strain tensors. However it is much more simple to do for (34) or (39),
because the linear terms of strain tensors (33) and (37) are not equal to zero and it is
possible to go from (54), (55) to (56), (57).

2.5 Linear dynamic equations

The law of balance of momentum looks the same way as (17). To write down the law of
balance of kinetic moment we must linearize the right-hand side of equation (19). Here
τ, µ are stress and couple tensors determined by (56). Using formulae (56), we get linear
dynamic equations in displacements:

◦
∇ · (4X · ·g + 4Y · · f)� + ρQ = ρ

..
u,

◦
∇ · (g · · 4Y + 4Z · · f)� + (4X · ·g + 4Y · · f)�× + ρL = ρ (µ

..

θ + λ ϕ̇ θ̇ × m0).

(62)

3 The analogy between Kelvin’s medium, shells and
ferromagnets

3.1 Elastic shells and Kelvin’s medium

One may consider a non-classical elastic shell as a material surface every point of which
is a “fibre” that can turn and move. Thus a shell is a 2D polar medium. Constitutive
equations for shells can be obtained via the method described in [6]. As the own rotation
of a fibre can not induce any stresses in the shell, the way to obtain constitutive equations
of Kelvin’s medium is exactly the same. Hence we can find an analogy between consti-
tutive equations. In particular, for elastic shells one may use strain tensors (33) and

constitutive equations (34), where ∇ and
◦
∇ are 2D nabla operators. It is more expedient

to use instead of E its 2D analog (
◦
∇R · (

◦
∇R)� − a)/2 in case of shells. Set of strain

tensors (33) for shells describes deformations in a simpler way than in Kelvin’s medium:
in 2D case all components of strain tensors (33) are independent, and all independent
kinds of deformation can be expressed as functions in these components, and in 3D case
components of strain tensors (33) include all independent kinds of deformation, but some
of these components are functions of others.

There are two differences between a shell and Kelvin’s medium: 1) a shell is a 2D
surface and Kelvin’s medium is a 3D continuum; 2) every point body of Kelvin’s medium
(unlike a fibre of a shell) has a finite or large angular velocity of own rotation and non-
zero axial moment of inertia λ. The second difference is essential when considering wave
processes but does not influence the constitutive equations.
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3.2 Ferromagnets and Kelvin’s medium

3.2.1 Nonlinear equations

One example of deformable solids is saturated elastic ferromagnetic insulators. Below
we will state some facts about ferromagnets which can be found in [7]. We will consider
insulators to avoid necessity to take into account electric fields. We will not consider any
processes concerning heat transfer though this restriction is not essential.

Every point of such a ferromagnet is characterized by displacement u and by density
of a vector of magnetic moment S. The state of magnetic saturation is defined as the
state of ferromagnet when |S| is constant in radius-vector R and time t.

Forces and moments both of elastic and quantum mechanical nature act upon every
point of a ferromagnet. The density of a moment induced by an external magnetic
induction Be is equal to

L = S × Be. (63)

Exchange interaction (interaction between spins depending on their relative turn) re-
sults in a close-range moment interaction; density of the above moment acting upon an
elementary surface with the normal n is equal to

Mexc
(n) = S × Γ(n) (64)

where Γ(n) is so called “contact exchange force”. This allows to consider a tensor of
exchange interactions B such that

S × (ρ Γ(n) − n · B) = 0. (65)

The power of a contact exchange force is equal to ρ Γ(n) · Ṡ. Apart from the moment
of exchange interaction, there exist forces of elastic nature and a “spin-lattice” moment.
The latter depends on the direction of a magnetic moment of a point body relatively to
the lattice.

The own kinetic moment of a point body in ferromagnet is equal to ρS/γ, where γ

is the gyromagnetic ratio (constant).
The law of balance of force for elastic ferromagnetic insulator is

d

dt

∫
�V

ρv dV =

∫
�V

ρQdV +

∫
Σ

τ(n) dΣ. (66)

The law of balance of moment for elastic ferromagnetic insulator is

d

dt

∫
�V

ρ (r × v + S/γ)dV =

∫
�V

ρ (L + R × Q)dV +

∫
Σ

(ρS × Γ(n) + R × τ(n))dΣ. (67)

The law of energy balance looks in the following way:

d

dt

∫
�V

ρ (v · v/2 + U − S ·Be)dV =

=

∫
�V

ρ (Q · v − S · Ḃe)dV +

∫
Σ

(ρ Γ(n) · Ṡ + τ(n) · v)dΣ. (68)
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For saturated ferromagnet |S| = const, and one can write

Ṡ = ω × S. (69)

Basing on (66)–(68) G.A. Maugin [7] obtains constitutive equations of ferromagnets using
phenomenological approach.

Let us consider a saturated ferromagnet in terms of mechanics of elastic polar medium
and interpret the facts stated above. It is a medium with interactions both of moment
and force nature. Vector of translational displacement u and vector S are kinematic
characteristics of every point body. Since |S| = const, we may write S = P(R, t) · S0,
where S0 is S in the initial configuration, and we can interpret ω in equation (69)
as angular velocity corresponding to the turn-tensor P. One may use P as kinematic
characteristic of a point body instead of S. We may represent

P(t) = P3(ψm0) ·P2(ϑl0) · P1(ϕm0), (70)

where m0 = S0/|S0|. Vector S does not depend on ϕ and no internal stresses can be
induced by P1.

The power of an exchange force is ρ Γ(n) · Ṡ (69)
= ρ Γ(n) · (ω×S)

(64)
= ρMexc

(n) ·ω, i.e. it is
equal to the power of an exchange moment performing mechanical work upon rotation of
a point body with angular velocity ω. Thus, taking into account (69), (63), we rewrite
the law (68) as

d

dt

∫
�V

ρ (v · v/2 + U)dV =

=

∫
�V

ρ (Q · v + L · ω)dV +

∫
Σ

(ρMexc
(n) · ω + τ(n) · v)dΣ. (71)

Taking into account (64) – (67) and (69), we may write down the local form of (71):

ρ U̇ = τ · · ∇v − τ× · ω − (B × S) · · ∇ω (72)

Comparing (25) and (72), we see that they coincide if we put

µ = −B × S ≡ −SB × m. (73)

We can represent µ in Kelvin’s media in this way due to restriction (42).
We may try to draw a parallel between an elastic ferromagnetic insulator and Kelvin’s

medium. Let us consider medium with point bodies having infinitesimal moments of
inertia with densities λ and µ but large angular velocity of own rotation ϕ̇; vector m is
an axis of a point body. In this case, the own kinetic moment of a particle is approximately
equal to ρλϕ̇m.

If the external moment has no projection on the axis of a point body m then ϕ̇ is
constant, and we can denote S/γ = λϕ̇, S = Sm. Thus we have ρS/γ to be the kinetic
moment of a point body, |S| = const, and direction of S coincides with the axis of a
particle.
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Since we assume that L · m = 0, there exists vector Be such that L = S × Be, and
Be can be interpreted as external magnetic induction.

We may introduce the couple tensor µ in a usual way. It has been shown (see section 2)
that µ · m = 0. This allows us to represent µ as µ = −SB ×m and to interpret B as a
tensor of exchange interaction.

If we rewrite the laws of balance of momentum, kinetic moment, and energy for
Kelvin’s medium in the new notation, we get these laws for saturated elastic ferromag-
netic insulators that one can find in [7]. This allows us to obtain nonlinear constitutive
equations for elastic ferromagnetic insulators with the method described above and the
result will be exactly the same. Note that (33) (where ã = E× m0) can be found as an
intermediate result in [7].

If we use (35) and suppose that U does not depend on α, we obtain the system of
constitutive equations being used in the theory of ferromagnets. The assumption that
∂U

∂α
= 0 demands that τ× ·m = 0, thus there exists a vector BL such that τ× = MBL×m.

In terms of the theory of ferromagnets, it means that a spin-lattice interaction is provided
only by “local magnetic induction” (BL) acting upon spins. If we do not make the above
assumption, then we have τ× · m = µ� · · ∇m (see (43)). We see that when changing
U(E,F, γ) to U(E, Φ, γ) as G.A. Maugin does in [7], we lose the dependence on one of
kinds of deformation (α), making the transformation dubious.

In [11] we can find that representation for U may include the term m · (∇ × m) =
tr(K · a · A−1). To ensure that τ× · m = 0 (as G.A. Maugin [7] requires) we must set
U = U(E, Φ, γ), i.e. exclude dependence U on F. However, it is impossible to satisfy
both of these requirements, because F = K · a · A−1 · (2E − γ⊗γ + E).

Thus we have an exact analogy between ferromagnets and Kelvin’s medium. An
axis of a point body corresponds to the unit vector of a spin, all angular characteristics
correspond to magnetic subsystem and translational ones to elastic subsystem. We make
the following analogies:

u is the translational displacement in both media;

m is the axis of a point body in a Kelvin’s medium and the unit vector of a magnetic
moment (or of a spin) in a ferromagnet;

τ is stress tensor in both media;

µ = −B × S is the couple tensor; B is the tensor of exchange interactions;

ρλϕ̇m = ρS/γ is the kinetic moment, where λ is the density of axial moment of inertia,
ϕ̇ is the angular velocity of own rotation in Kelvin’s medium; S is the magnetic
moment, γ is the gyromagnetic ratio, ρS = M is the magnetization in ferromagnet.

[Note that λ needs to be infinitesimal and ϕ̇ large for the analogy to work];

L = Be × m is the density of external body moment; Be is the external magnetic in-
duction;

τ× = MBL × m; BL is the local magnetic induction in ferromagnet [only if U does not
depend on α].
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Exchange interaction corresponds in Kelvin’s medium to a moment acting upon a
particle depending on the relative turn of particles; τ× (and BL respectively), namely
spin-lattice interaction, correspond to a moment depending only on the orientation of
the particle under consideration (as if all other point bodies were point masses).

The coupling between angular and translational displacements in Kelvin’s medium
corresponds to the magnetoacoustic phenomena. Therefore it seems to be very important
to properly take into account the dependence of U on the “mixed” kinds of deformations
such as α (if we use (35)) or F (if we use (33)). These phenomena are most interesting
both from theoretical and practical points of view.

3.2.2 Linear equations

To obtain linear equations it is more convenient to use (33) as opposed to (35) because
tensor Φ = o(θ2) when θ = o (1). G.A. Maugin [7] does not follow this way and his
results are different from (56). If we put in (56) 4Y = 0, we get equations linearized
relatively to ferromagnetic phase obtained in [7]. We can see that our expression is
more general because it includes the term coupling elastic, spin-lattice and exchange
interactions. This coupling occurs in real magnetic solids, and sometimes it results in
formation of helicoidal magnetic structures [11]. We can suppose that taking this term
into account is significant for description of magnetoacoustic resonance.

In case of ferromagnets in (61) tensor 4T is the tensor of elastic constants, 4U depends
on the magnetizability constants, 4W can be expressed through piezomagnetic constants,
and 4Z can be expressed through ferromagnetic exchange constants.

Linear dynamic equations are the same as (62) but we have to put µ = 0 in the
right-hand side of the second equation since the analogy between dynamic equations of
ferromagnets and Kelvin’s medium exists if λ, µ are infinitesimal and ϕ̇ is large. Setting
µ = 0, we lose the influence of the initial conditions.

Let us consider the case when the external magnetic induction Be can be expressed
as B0m0 + B̃, where B̃ is infinitesimal and B̃ ·m0 = 0. Then external moment L can be
written as

L = Sm×Be = S(m0 +θ×m0)× (B0m0 + B̃)+O (θ ·B̃) = S(m0× B̃−B0θ)+O (θ ·B̃)

We obtain linear dynamic equations:

◦
∇ · (4X · · (

◦
∇u + θ × E) + 4Y · ·

◦
∇θ)� + ρQ = ρ

..
u,

◦
∇ · ((

◦
∇u + θ × E) · · 4Y + 4Z · ·

◦
∇θ)�+

+ (4X · · (
◦
∇u + θ × E) + 4Y · ·

◦
∇θ)�× + Mm0 × B̃ − MB0θ = Mθ̇ × m0.

(74)

One can see that B0 acts as a torsional spring.

4 Wave processes

We shall consider wave propagation in the medium with infinitesimal angles of nutation
for the case when exact analogy between ferromagnets and Kelvin’s medium can be es-
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tablished, i.e. λ, µ are infinitesimal, ϕ̇ is large, λϕ̇ = O (1). The results can be interpreted
both in terms of Kelvin’s medium and ferromagnets.

Let us consider the case Q = 0, B̃ = 0. We shall search for a solution of (74) in
the form u = u0ei(k·r−Ωt), θ = θ0ei(k·r−Ωt). After substituting into (62) we obtain a
spectral problem:

(4X1 · ·k⊗k − ρΩ2 E) · u0 + (ik · 4X3 · ·ε + 4Y1 · ·k⊗k) · θ0 = 0,

(4Y2 · ·k⊗k − i ε · · 4X · k) · u0+

+ (4Z1 · ·k⊗k + ε · · 4X · ·ε + MB0a + i (2(3Ñ · k)A + Mm0 × E)) · θ0 = 0,

(75)

where

4X1 = Xmnkl rm⊗rk⊗rl⊗rn, 4X3 = Xmnklrn⊗rm⊗rk ⊗rl, (76)
4Y1 = Ymnβl rm⊗rβ⊗rl⊗rn, 4Y2 = Ymnkl rk⊗rm⊗rn⊗rl, (77)
3Ñ = −ε · · 4N, 4Z1 = Zαnβl rα⊗rβ ⊗rl ⊗rn. (78)

Let us consider a material with a transversal isotropy (for highly symmetric media
we have Y = 0). Let m0 be an axis of isotropy. We shall investigate the particular case
when X is isotropic, and Z is orthotropic. In this case taking into account restrictions
(59) given by 6th balance equation in the linear theory (48) we have

4X = (X11 − X22)E⊗E + 2X22(rm⊗rn)S(rm⊗rn)S (79)

H = H11a⊗a + H22(a2⊗a2 + a4⊗a4), (80)

where a2 = r1⊗r1 − r2⊗r2 and a4 = r1⊗r2 + r2⊗r1

N = N((r2⊗r3)A⊗r1⊗r3 + (r3⊗r1)A⊗r2⊗r3), (81)

Z =Z11a⊗a + Z33a3⊗a3 + Z22(a2⊗a2 + a4⊗a4)+

+Z1313(r1⊗r3⊗r1⊗r3 + r2⊗r3⊗r2⊗r3) (82)

where a3 = r1r2 − r2r1, and (75) can be rewritten as⎛
⎜⎜⎜⎜⎝

A11 − ρΩ2 A12 A13 B11 B12

A12 A22 − ρΩ2 A23 B21 B22

A13 A23 A33 − ρΩ2 B31 B32

B11 B21 B31 C11 C12 − iMΩ

B12 B22 B32 C21 + iMΩ C22

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

u1

u2

u3

θ1

θ2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

0

0

0

0

⎞
⎟⎟⎟⎟⎠

(83)
where Amn, Bmβ, Cαβ are real polynomials of second degree in k (see Appendix A).
Amn depend only on X and Bmβ depend on Y, Cαβ depend on Z, M, and B0.

If Y = 0, i.e. there is no coupling between angular and translational displacements
(magnetic and elastic subsystems), possible dispersion relation graphs are shown in Fig. 2.
There exists a cut-off frequency for angular (spin) waves. The position of the curve
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Figure 2: Partial dispersion curves

corresponding to these waves depends on magnetization M (or on the kinetic moment of
a point body in Kelvin’s medium); the curve may lay higher than other curves if M is
not large enough. The cut-off frequency increases with increasing B0. [Curves in Fig. 2
are calculated with parameters M = 50, B0 = 5, X11 = 20, X22 = 10, Z11 = 20, Z22 =
10, k · m0 = 0].

Let us consider the case when Y is infinitesimal, i.e. the coupling between angular
and translational displacements in Kelvin’s medium (magnetic and elastic subsystems in
ferromagnet) is weak.

The graphs for dispersion relations are close to the partial curves corresponding to
the case of independent oscillations of elastic and magnetic subsystems. However, there
is an essential difference: the coupling, even weak, qualitatively changes the behaviour
of the curves in neighbourhoods of their intersections.

Indeed, suppose Bmβ �= 0 but infinitesimal. Let us consider equation (83) in possibly
complex coordinates such that matrixes A and C are diagonal. After these changes
of variables components of matrix B continue to be infinitesimal. Suppose the point
(Ω∗, k∗) is an intersection of two graphs for partial dispersion equations. Consider a
particular case when these roots of partial dispersion equations are not multiple. It means
f1(Ω∗, k∗) = f2(Ω∗, k∗) = 0, where f1(Ω, k) and f2(Ω, k) are diagonal components of
matrix after transformation, k = |k|. In a neighbourhood of (Ω∗, k∗) problem (83) may
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Figure 3: Dispersion curves for partial and coupled waves

be written as follows:
f1(Ω, k)f2(Ω, k) − b(Ω, k) = 0, (84)

where b is infinitesimal and depends on the other matrix components. Supposing that
b(Ω∗, k∗) = b∗ �= 0 (the coupling is not degenerative at this point) we shall expand f1

and f2. Let Ω̃ = Ω − Ω∗, k̃ = k − k∗, cg1 = −
f′

1k

f′
1Ω

, cg2 = −
f′

2k

f′
2Ω

(group velocities of
non-coupled waves). Expanding to second order terms, (84) becomes

(Ω̃ − k̃(cg1 + cg2)/2)2 − k̃2(cg1 − cg2)2/4 = b∗. (85)

It is a hyperbola with asymptotes coinciding with tangents to the partial curves f1 = 0,
f2 = 0 at the point (Ω∗, k∗). We see that curves corresponding to the weak coupled
waves have no intersection in the neighbourhood of (Ω∗, k∗); they are close to each other
and their group velocities are equal at k∗ and at Ω∗ (Fig. 3).

This behaviour of the dispersion relation graphs points to the phenomenon called
magnetoacoustic resonance in the physics of ferromagnets. Elastic and spin waves interact
with each other in the neighbourhood of this point; for example, it is possible to excite
elastic waves with an external magnetic field or to induce a spin wave with an elastic
one. This phenomenon has a lot of applications in technology.
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Since we take into account couplings of elastic and spin waves in the most general way,
we see more principal possibilities for existence of phenomena akin to magnetoacoustic
resonance. In the material under consideration there can be four points analogous to the
point of magnetoacoustic resonance (the number of this points depends on the direction
of k). The intersection of compression wave graph and magnetic waves corresponds to
the case described above. The intersection of shear wave graphs and magnetic wave
graphs needs a separate analysis since partial shear curve corresponds to a double root
in the case of isotropic X.

Graphs in Fig. 4 are calculated with parameters M = 50, B0 = 5, X11 = 20, X22 = 10,
Z11 = 20, Z22 = 10, H11 = H22 = 1, k ·m0 = 0, and in Fig. 2 with the same parameters
but 4H = 0. In the latter case all resonances disappear. One can see that the assumption
of G.A. Maugin 4Y = 0 may exclude from consideration some essential phenomena.
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Figure 4: Dispersion curves: four resonances

To understand clearly these phenomena one has to consider nonlinear theory. The
most difficult problem is to find the concrete form of nonlinear strain energy. We have
seen that it is very important to take into account all kinds of deformation that can
provide coupling between elastic and magnetic subsystem.
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5 Conclusion

In this paper we obtain nonlinear constitutive and dynamic equations of Kelvin’s medium.
We show an exact analogy between elastic ferromagnetic insulators and this medium. We
consider all kinds of deformations that can induce internal stresses, which gives the pos-
sibility to take into account the interaction between magnetic and elastic subsystems in
the most general way. This is important for description of a magnetoacoustic resonance.
For example, there can be found more resonances for some directions of wave propagation
in low symmetric materials.
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Appendix A

A11 = k2
1(X11 + X22) + (k2

2 + k2
3)X22

A22 = k2
2(X11 + X22) + (k2

1 + k2
3)X22

A33 = k2
3(X11 + X22) + (k2

1 + k2
2)X22

A12 = k1k2X11

A13 = k1k3X11

A23 = k2k3X11

B11 = k2
1(H11 + H22) + k2

2H22

B22 = k2
2(H11 + H22) + k2

1H22

B12 = B21 = k2
1k2

2H11 + k2
3N/2

B31 = −k2k3N/2

B32 = −k1k3N/2

C11 = k2
1(Z11 + Z22) + k2

2(Z22 + Z33) + k2
3Z1313 + MB0

C22 = k2
2(Z11 + Z22) + k2

1(Z22 + Z33) + k2
3Z1313 + MB0

C12 = k1k2(Z11 − Z33)

(86)
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On the Painleve Paradoxes∗

1 Introduction

The friction is one of the most widespread phenomena in a Nature. The manifestations
of friction are rather diverse. The laws, with which the friction in concrete situations is
described, are diverse as well. Most popular in the applications are two laws of friction:
the linear law of viscous friction and so-called dry friction. The viscous friction is well
investigated, and its manifestations are clear and are easily predicted. It cannot be said
about the laws of dry friction, though they are studied and are used in practice already
more than two hundred years. Note that the friction, arising at sliding of one rigid
body on another at absence of greasing, is called the dry friction. The relative sliding
of bodies in contact, as a rule, is accompanied by occurrence of forces of friction, which
render significant influence on dynamic processes in different sorts technical devices.
Coulomb carried out the first researches of the dry friction in the end of XVIII century.
The schematic of the Coulomb experiment is submitted in a Fig.1.

In 1791 Coulomb has published the first formulation of the law of dry friction in the
following simple form.

Ffr = −µN sign
·
x, if

·
x �= 0, (A)

The external simplicity of this law rather deceptive. As a matter of fact the Coulomb law
of friction is the most complicated constitutive equation in mechanics. This may be seen,
for example, from the fact that up to now the general mathematical statement of the
Coulomb law of friction is absent in literature. The formulation (A) is only small part of
general statement. In experiments by Coulomb the force of squeezing N of bodies was
set and was known. However, this force is not known in the most of nontrivial problems
and must be found in the process of a solution of the considered task. In some cases,
the function N(t) can have complex view and depends on many physical features of
the task under consideration. Factor of friction µ is accepted to be the characteristic
of bodies in contact. Now factors of friction for various pairs of bodies are resulted in
the data books. In the simple situations the Coulomb law allows completely to solve
the put task. During about one century it was considered, that the Coulomb law does
not comprise any ambiguities from the theoretical point of view. At the same time,

∗Wiercigroch M., Zhilin P.A. On the Painleve Paradoxes // Proceedings of the XXVII Summer School
“Nonlinear Oscillations in Mechanical Systems”, St. Petersburg, Russia, 2000, P. 1–22.



90 P. A. Zhilin. Advanced Problems in Mechanics

x
F

N

Ffr ì

Figure 1: The Coulomb experiment

the rough development of machine-tool construction in second half of XIX century has
revealed many cases, in which, on the first sight, the application of the Coulomb law
leads to some contradictions. The special anxiety was caused by strange vibrations
of machine tools (in some decades they were investigated and have received the name
of frictional self-oscillations), processing, sharply lowering accuracy, of let out products.
Sometimes the character of the movements arising in certain conditions was very strange,
almost saltatory. Now such saltatory movements became object of intensive researches —
see [1]. These circumstances, and also the theoretical needs, have forced the researchers
again to address to the Coulomb law of dry friction. In 1895 Painleve has published
the controversial book [2]. In what follows we shall cite the book [3], which contain
other important works [4]–[14] on the subject. In [12] the opinion was expressed, that
the Coulomb law is incompatible to the basic principles of the mechanics. Analyzing
numerous examples of application of the Coulomb law in tasks of dynamics of systems
with friction, Painleve comes to completely unexpected conclusion: “... While the marked
special conditions are carried out, law by Coulomb is in the contradiction with dynamics
of rigid bodies” [12], (see [3], p. 246) and further “... Between dynamics of a rigid body
and the Coulomb law there is a logic contradiction under conditions, which can be carried
out in the reality” [3], p. 248. As the logic a contradiction Painleve names situations,
when the solution of the basic task of dynamics either does not exist, or is not unique.
In modern literature these contradiction are known as the Painleve paradoxes. Now
conclusions by Painleve even if they would be completely correct already anybody would
not surprise. In continuum mechanics there is a chapter devoted to the theory of the
constitutive equations, where the basic problem is the statement of conditions, at which
those or other constitutive equations lead to the correctly put tasks. The Coulomb law is
the typical constitutive equation, which, basically, can appear unacceptable. The merit
of Painleve consists that he was the first who has pointed out at this central problem
in mechanics. The Painleve results have called forth long discussion, in which such
scientists as L. Prandtl, F. Klein, R. Von Mises, G. Hamel, L. Lecornu, de Sparre, F.
Pfeifer and, of course, P. Painleve have taken part. The opinions of the participants
of discussion were separated. L. Lecornu [7, 8], in essence, having recognized presence
of paradoxes, offers to refuse from the model of rigid body. F. Klein [6] has come to
a conclusion: “The Coulomb law of friction is not in the contradiction neither with
principles of mechanics, nor with the phenomena observable in a nature: they need only
correctly to be interpreted”. An originality of results by F. Klein is caused by that he
for the first time in tasks of a considered type used “hypothesis” of the instant stopping.
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In this occasion the discussion has found new features, and at its center there was a
hypothesis of F. Klein, which F. Klein did not consider as a hypothesis, but also has not
deduced it on a level of a fact in evidence. R. Von Mises [9] concerning a hypothesis of
F. Klein has expressed so: “1. F. Klein explains the phenomenon not from the point of
view of the Coulomb law, but using a new rule obtained from experience. 2. This new
skilled rule can be represented in the form of some modification of the Coulomb law”.
Further R. Von Mises results rather interesting reasons and gives the formulation adding
the Coulomb law and allowing to combine sights of Painleve and Klein. Nevertheless,
final conclusion by R. Von Mises is those: “Thus, not logic, but the methodology of the
Newton mechanics compels us to refuse from the Coulomb law”. G. Hamel [5] has joined
the point of view by L. Lecornu about failure of the rigid body model. L. Prandtl [14]
has expressed rather definitely: “In the statements of Mises and Hamel the speech goes
about” to a hypothesis “of instant stopping. As opposed to this I emphasize, that in
this case it is possible to speak only about result obtained through limiting transition.
The research of elastic systems shows, generally speaking, something greater: it may be
established, that from two possible movements, which the conventional theory gives for
positive pulses, one, namely, accelerated motion will be steady, and another, slowed down,
will be, on the contrary, unstable. In a limit we obtain the indefinitely large instability.
So it is quietly possible to tell, that this second movement is practically impossible. From
this it follows, that it is impossible by no means to expose of logic doubts against the
Coulomb law”. Under the Prandtl offer, F. Pfeifer made the large research [13]. However,
the clear confirmation of such point of view was not carried out. Thus, in discussion the
Painleve position has not found a convincing refutation, as was marked in three notes
by Painleve [10, 11, 12] during the discussion. Even those authors, which disagree with
the Painleve position, have not specified in which items of the Painleve reasoning is
mistaken, and, hence, the position of Painleve remains not challenged. There was an
opinion, which P. Appell [15], p. 117, has expressed in the following words: “it is not
necessary to think, that only in exclusive cases there can be possible such difficulties.
On the contrary, they arise in the most common cases, at least, at enough large value of
factor of friction µ. Because of this new experiments for a finding of the laws of friction,
which is not resulting more in these difficulties, are necessary”. Nevertheless, some ways
of an exit from paradoxical situations were shown. The basic way of an exit is refusal of
the rigid body model. Other way is application if necessary “hypotheses” of the instant
stopping. However, its substantiation remained behind frameworks of the carried out
researches. For decades, past from time of end of discussion, the interest to the Painleve
paradoxes that faded, again grew. N.V. Butenin [16] showed fruitfulness of the Klein
hypothesis in the large work. The significant development of ideas connected to partial
refusal of the rigid body model was made in works of Le Suan Anh [17], in which the
references to many other works can be found.

From told follows that it is necessary, firstly, to show features of the Coulomb law
of friction, not complicated by any other circumstances, and, secondly, it is necessary
to consider those conditions, which were investigated by Painleve. Only after that it
will be possible either to recognize a position by Painleve, or to reject it partially or
completely. It is well known that the tasks with the Coulomb friction have the not
unique solution even in the elementary cases. F. Klein marked the importance of this
fact for the first time. Namely, F. Klein has found out the existence of discontinues
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solutions, which should be taken into account for avoidance of the Painleve paradoxes.
However majority of the scientists have not accepted the result of F. Klein. It is easy to
understand the main reason of this. In the offer by Klein we deal with instant stopping
of a body of nonzero weight. It is well known, that in such a case it is necessary to apply
the infinitely large force, what is impossible in a reality. In works [8, 17] the physical
sense of the discontinues solutions was shown and is specified as to choose the necessary
solution from two possible ones. Nevertheless, as it became clear from the subsequent
discussions, there is a necessity to consider the solution by F. Klein more carefully.

In given paper the authors are going to show the following. The authors agree that the
laws of dry friction, similarly to all experimentally established laws, require the further
researches and specifications. It is necessary, for example, if we wish to construct the
satisfactory theory of frictional auto vibrations. At the same time, the authors resolutely
object to the established opinion that the law of friction by Coulomb is the reason of
certain paradoxical results contradicting to the experimental facts or common sense. If to
consider cases, known in the literatures under the name of the Painleve paradoxes, then
it is easy to see that all of them concern to dynamic tasks for systems of rigid bodies.
It is well known that these tasks very frequently appear incorrectly put, though the
law of friction by Coulomb in them can not be applied. Nonuniqueness or nonexisting
of the solution are typical manifestations of the incorrectly put tasks. If we want to
work with rigid bodies, we should be ready that the not unique solutions can appear
which, in addition, can be non-smooth. The question, hence, consists not in getting rid
of them, but in giving them correct interpretation. The significant part of given paper
is devoted to this. Let’s note, that in tasks of dynamics of systems with the Coulomb
friction frequently shows features, characteristic for dynamics of systems at shock loading.
Sometimes this shock loading appears larvae. Let’s show told on an example of a task
shown in a Fig. 1. We assume, that the body moved at t < 0 with constant speed. At
the moment of time t = 0 all active forces stop the action, and the body goes on inertia.
Actually at t=0 occurs shock loading of a body by force of friction. Really, at t < 0 on a
body any forces did not act, as the active force was counterbalanced by force of friction.
When the active force has disappeared, the shock loading of a body by force of friction
has taken place. In other words, the collision of rigid bodies has taken place at absence
of seen attributes of impact.

2 The Coulomb Law of Friction

The conventional formulation of the Coulomb law of dry friction in textbooks has a form

Ffr = −µN sign
·
x, if

·
x �= 0, (1)

where the notation of the Fig.1 are used. Let us consider the task shown on the Fig.2
Making use Eq.(1) one may write the next equation of motion

m
··
x + µmg sign

( ·
x − x0ω cosωt

)
= 0. (2)

Initial conditions have a form

t = 0 : x = 0,
·
x = 0. (3)
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The Cauchy problem (2)–(3) may be solved, but its solution will not correspond to the
real motion of the mass m. The reason is that the equality (1) expresses only part of
the Coulomb low of dry friction. The general statement of this law can be represented
in the form

Ffr =

{
−µN sign

·
x, if

·
x �= 0,

fst, |fst| � µN if
·
x = 0,

(4)

where fst must be determined from the static equation. More exact expression of the
Coulomb law of friction is given by representation

Ffr =

⎧⎨
⎩ −µN sign

·
x, if τ2··

x
2

+
·
x

2 �= 0,

fst, |fst| � µN if τ2··
x

2

+
·
x

2

= 0,
(5)

where τ is the time-like parameter. One has to remember that the force of squeezing N

must be nonnegative N � 0. If we have the two-sided contact then equality (5) must be
replaced by the expression

Ffr =

⎧⎨
⎩ − (µ1N1 + µ2N2) sign

·
x, if τ2 ··

x
2

+
·
x

2 �= 0,

fst, |fst| � µ1N1 + µ2N2, if τ2 ··
x

2

+
·
x

2

= 0,
,

N1 � 0,

N2 � 0,
(6)

where µ1, µ2 are the factors of friction of downside and upside of the contact respectively,
N1, N2 are the forces of squeezing on downside and upside of contact respectively,
sometimes it is necessary to accept N1N2 = 0.

Thus for the task shown on Fig.2 we have the next Cauchy problem

m
··
x − Ffr = 0,

y = x − x0 sin ωt,
Ffr =

⎧⎨
⎩ −µmg sign

·
y, if τ2 ··

y
2

+
·
y

2 �= 0,

fst, |fst| � µmg if τ2 ··
y

2

+
·
y

2

= 0.
(7)

To this system initial conditions (3) must be added. The main difficulty of the problem
investigation is that it is necessary to look for nonsmooth solutions of (7), (3). For
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example, the function
·
y(t) may be discontinuus. In order to see this fact more clearly let

us consider the simple task shown on Fig.1 at F = 0. In this case we have the equation

m
··
x − Ffr = 0 (8)

and initial conditions
t = 0 : x = 0,

·
x = v. (9)

If the friction force Ffr is determined by expression (1), then we have the unique solution

·
x =

{
v − µNt/m, 0 < t < τcl � mv/µN,

0, τcl � t.
(10)

This is the classical solution. If the friction force Ffr is defined by (4) or (5), then we
have two solutions

a)
·
x1 =

{
v − µNt/m, 0 < t < τcl,

0, τcl � t.
, b)

·
x2 =

{
v, t = 0,

0 t > 0
(11)

The second solution in (11) is an exact solution of the task (8), (9) and (5). However,
it is discontinuus solution. Because of this it was ignored by the most of researches. F.
Klein was the first who had pointed out the importance of the discontinuus solution in
order to avoid the Painleve paradoxes [6]. N.V. Butenin [16] had used this discontinuus
solution in order to solve the number of tasks. The physical meaning of discontinuus
solution was shown in [18, 19]. The new reinterpret of solutions 11 will be given below
in section 6.

The given above formulations of the Coulomb law of friction are not sufficient in order
to apply them formally in any cases. One can say that the correct application of this
law requires a thorough insight into the details of considered problem. Without this it is
impossible to avoid all difficulties only by means of new experiments or new theoretical
considerations.

3 The Painleve-Klein Problem. Conventional Ap-

proach

Let us consider the task that was studied by P. Painleve [2] and after that was discussed
by F. Klein [6]. The task is shown on Fig.3. Namely in this problem P. Painleve had
found at the first time the paradoxical situations. Let us show the way of reasoning by
Painleve and Klein. Below the improved and enlarged analysis by Painleve and Klein is
given, but the basic results are practically the same.

The equation of motion can be represented in the form

M1

··
x = R + P1 + S cosα, M2

··
x = P2 − S cosα, 0 < α < π/2 (12)

where R is the friction force, S is a longitudinal force in the rod. In this task we have to
use the Coulomb law in the form (6), where

|N| = |S sin α| = |S| sin α = Sε2 sin α, ε2 = signS (13)
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Figure 3: The Painleve-Klein Problem

Thus the friction force R is defined as

R =

{
−µSε1ε2 sinα, if

·
x �= 0,

f, |f| � µ |S| sinα, if
·
x = 0,

··
x = 0

(14)

where ε1 = sign
·
x. The initial conditions have a form

t = 0 : x = 0,
·
x = v, (15)

where v is an initial velocity.
Let us suppose that at t > 0 the masses M1 and M2 are not moving:

·
x = 0. Then

instead of equations of motion (12) we have the equation of statics

f + P1 + S cosα = 0, P2 − S cosα = 0. (16)

From (16) it follows

f = −(P1 + P2), S = P2/ cosα, |P1 + P2| � µ |P2| tan α (17)

The last inequality determines the domain on the plane (P1, P2) where the statical so-
lution exists. Thus from the theoretical point of view the static solution exists always,
when inequality (17) holds. If P2 = 0, then the system can be at rest only when P1 = 0.

But the initial velocity may be different from zero! If P1 = 0, then the statical solution
is possible at v �= 0 only if µ tan α � 1.

Let us suppose that at t > 0 the system is moving with
·
x = const �= 0,

··
x = 0. Then

we have
−µSε1ε2 sinα + P1 + S cosα = 0, P2 − S cosα = 0, (18)

This system has solution if and only if

µ tan α = 2. (19)

The solution has a form
P1 = P2, signP1 = sign v.

If µ tan α �= 2, then the case
·
x = const �= 0 is impossible.
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Let us suppose that at t > 0 the masses M1 and M2 are moving:
·
x �= const,

··
x �= 0.

Then the force S is determined by the expression

S =
γP2 − P1

(1 + γ) cosα − µε1ε2 sinα
, γ =

M1

M2

. (20)

In the Painleve-Klein analysis the restriction

γ = 1, P2 = 0 (21)

were accepted. Multiplying expression (20) by ε2 and taking into account the equality
|S| = Sε2 we obtain

ε2 (γP2 − P1)

(1 + γ) cosα − µε1ε2 sin α
> 0. (22)

For small µ > 0 we have

(1 + γ) cosα − µ sin α > 0, ⇒ µ tan α < 1 + γ (23)

Then from (22) it follows
ε2 = sign (γP2 − P1) . (24)

Thus for small µ we have two solutions: one is given by (17) and another is determined
by

S =
γP2 − P1

d
,

R = −µ sign v |S| sin α,

d = (1 + γ) cosα − µ sign v sign(γP2 − P1) sin α.
(25)

This case was not considered by Painleve, since from the Painleve point of view in this
case there is no problem. As we see, it is not so. At the moment we have no reasons in
order to choose one of two possible solution. However, the Coulomb law of friction is
not responsible for such a situation. In fact, our model is not adequate to the reality in
many important aspects. In the next section we show why it is important and how to
solve the problem of choice.

Let us suppose that the inequality

(1 + γ) cosα − µ sin α < 0 (26)

is valid. This inequlity determines a domain of paradoxes accordingly Painleve. Here we
have to consider the different cases.

1. The case when γP2 − P1 = 0.

In such a case the friction is absent and there is nothing to discuss.
2. The case when ε1 = sign

·
x = sign v = 1 and γP2 − P1 < 0.

Then the inequality (22) may be rewritten as

ε2 (γP2 − P1)

(1 + γ) cosα − µε2 sin α
> 0. (27)

In such a case we have two different solutions

S =
γP2 − P1

(1 + γ) cosα + µ sin α
, ε2 = −1 (28)
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and
S =

γP2 − P1

(1 + γ) cosα − µ sin α
, ε2 = +1. (29)

Thus in this case we have three different solutions: (17), (28) and (29).
3. The case when ε1 = 1, γP2−P1 > 0.

In such a case inequality (27) is not valid for any value of ε2. Thus in this case we
have the unique solution (17). The system is instantly stopping.

4. The case when ε1 = −1, γP2−P1 < 0.

Then inequality (22) takes a form

ε2 (γP2 − P1)

(1 + γ) cosα + µε2 sin α
> 0. (30)

There is no value of ε2 to satisfy this inequality. We have the unique solution (17).
5. The case when ε1 = −1, γP2 − P1 > 0. In this case we have two solutions for S

S =
γP2 − P1

(1 + γ) cosα + µ sin α
, ε2 = +1 (31)

and
S =

γP2 − P1

(1 + γ) cosα − µ sin α
, ε2 = −1 (32)

Again we have three solutions (17), (31), (32).

Painleve presumed that the Coulomb law of friction is responsible for such unsatisfac-
tory situation. Much later the Painleve analysis was confirmed by P. Appell [15]: “it is
not necessary to think, that only in exclusive cases there can be possible such difficulties.
On the contrary, they arise in the most common cases, at least, at enough large value of
factor of friction µ. Because of this new experiments for a finding of the laws of friction,
which is not resulting more in these difficulties, are necessary”. However, L. Prandtl [14]
and F. Klein [6] were not agree with the conclusions by Painleve. F. Klein had pointed
out that if v < 0, then there is a unique solution

·
x = 0. In order to avoid contradictions

in the case v > 0, F. Klein offer to accept the statical solution
·
x = 0 as well. But F.

Klein did not explain why we have to do this. The Painleve considerations are supposed
to be right even in modern books — see, for example, [17].

4 The Painleve-Klein problem. Alternative approach

It is not difficult to see that the Painleve analysis, shown in previous section, is needed in
some additions and improvements, especially from the physical point of view, since the
task shown on Fig.3 is undefined in some important aspects. There is useful heuristic
principle in mechanics: if one accepts some assumptions, then it is necessary to show the
model in which these assumptions may be exactly realised. Only in such a case one can
be shure that accepted assuptions have physical meaning. In the Painleve-Klein problem
the model is described by equations (12) and (14). From the pure mathematical point of
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Figure 4: The structure of the downslipper

view this model is certain mathematical object and we have to study its properties. What
these properties are, we can not speak about paradoxes, for the mathematical object can
have the most fantastic properties. From the physical point of view the situation varies.
We speak about paradoxes when the results of the decision of this or that task contradict
common sense. But in such a case the physical statement of the task itself should not
contradict common sense. Let’s discuss the model discribed by equations (12) and (14).
Equations (12) show that there are no moments on the ends of rod. This means that
the masses M1 and M2 may be rotated with respect to the rod fluently. It is easy to see
that equations (12) and (14) correspond to the case shown on Fig.4a. Let us underline
that the mass M1 is touching either the upside or downside of the gap. From Fig.4a it
is seen that in considered case the Coulomb law of friction can’t be used since we have
rolling motion of M1 instead of the sliding, which is possible only if we exclude the turn
of the body M1 with respect to the rod. However, in such a case the force in the rod
will not be a longitudinal force any more and equations (12) must be changed. Thus
the statement of the problem considered in the previous section is physically meaningless
and the Coulomb law of friction is not responsible for the paradoxes. More realistic
structure of the slipper is shown on Fig.4b. The forces acting on the slipper M1 from the
foundation are shown on Fig.4b. Some other cases are shown on Fig.5a-e. The difference
between cases Fig.5a and Fig 5b is that in the second case the slipper can’t rotate with
respect to the rod. Below we deduce the equations for the case on Fig.4b. Let us write
down the equations of motion

M1

··
xi = P1i + R1 + R2 + R3 + R4 + S(cos αi+ sin αj), (33)

M2

··
xi =P2i − S(cos αi+ sin αj) + R5j, (34)

where R5j, Rk, (k = 1, 2, 3, 4) are the reactions acting on the body M2 and points
1, 2, 3, 4 of the slipper M1 (see Fig.4b) respectively, S is a longitudenal force in the rod,
S > 0 when the rod is stretched. For the reactions Rk we have

R1 = R1i+N1j, R2 = R2i−N2j, R3 = −Q1j, R4 = Q2j (35)

and the restrictions

N1 � 0, N2 � 0, N1N2 = 0, Q1 � 0, Q2 � 0, Q1Q2 = 0 (36)
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are valid. Besides, the functions R1, R2 are defined by the Coulomb law of friction. From
equations (33)–(35) it follows

M1

··
x = P1 + R1 + R2 + S cosα, M2

··
x = P2 − S cosα, (37)

N1 − N2 − Q1 + Q2 + S sinα = 0, R5 − S sin α = 0,

N1N2 = 0, Q1Q2 = 0. (38)

The Coulomb law of friction can be written in the form

R1 =

{
−µN1 sign

·
x, if

·
x �= 0,

··
x �= 0,

f1, |f1| � µN1, if
·
x = 0,

··
x = 0,

(39)

R2 =

{
−µN2 sign

·
x, if

·
x �= 0,

··
x �= 0,

f2, |f2| � µN2, if
·
x = 0,

··
x = 0.

(40)

We need to know the sum

R1 + R2 =

{
−µ (N1 + N2) sign

·
x, if

·
x �= 0,

··
x �= 0,

f1 + f2, |f1| � µN1, |f2| � µN2, if
·
x = 0,

··
x = 0,

(41)

where the restrictions (36) must be taking into account. Now we are able to compare
the statements (12), (14) and (37), (38), (41). If Q1 = Q2 = 0, then both statements
are the same. Let us pay attention that the Coulomb law of friction is applying in both
statements in the same manner. If Q1 �= 0 or Q2 �= 0, then these statements are different
very much. First of all, the system (36)–(41) with initial conditions

t = 0 : x = 0,
·
x = v (42)

is incomplete one. We need one more equation. There exist different ways. The most
reliable way is to take into account the elasticity of the gap walls. Strictly speaking in
such a case we must not only add a new equation but replace the first equation of system
(38) by the next equation

M1

··
y = N1 − N2 − Q1 + Q2 + S sin α, (43)

where y is vertical coordinate of the mass center of M1. Let us suppose that the slipper
M1 can be rotated by the small angle ϕ. In such a case the vertical coordinates of the
points 1, 2, 3, 4 may be found as

y1 = y + l1ϕ, y2 = y + l1ϕ, y3 = y − l1ϕ, y4 = y − l1ϕ. (44)

For the reactions N1, N2, Q1, Q2 the next constitutive equations may be accepted

N1 = −c [1 − θ(y + l1ϕ)] (y + l1ϕ), N2 = cθ(y + l1ϕ)(y + l1ϕ),

Q1 = cθ(y − l1ϕ)(y − l1ϕ), Q2 = −c [1 − θ(y − l1ϕ)] (y − l1ϕ), (45)
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where l1 is a parameter of the length dimension, c > 0 is a stiffness of elastic foundation,
and θ(z) is the characteristic function of the domain z � 0

θ(z) =

{
1, if z � 0,

0, if z < 0.
,

θ+ ≡ θ(y + l1ϕ),
θ− ≡ θ(y − l1ϕ).

(46)

The additional equation can be accepted in the next form

M1r2 ··
ϕ = l2 (N1 − N2 + Q1 − Q2) + l3(R1 − R2) − εP1, (47)

where l2, l3, ε are the parameters of the length dimension, r is an inertia radius of the
slipper. We obtain the closed system of equations (37), (39), (40), (43), (45), (47). To
this system we have to add the initial conditions which can be taking, for example, in
the next fom

t = 0 : x = 0,
·
x = v, y =

·
y = ϕ =

·
ϕ = 0. (48)

Only now we have the well-defined task from the physical point of view. The final
statement can be represented as

M1

··
x = P1 + R1 + R2 + S cosα, M2

··
x = P2 − S cosα,

M1

··
y + 2cy = S sinα, M1r2 ··

ϕ + 2cl2l1ϕ = l3(R1 − R2) − εP1, (49)

where

R1 + R2 =

{
−µc |y + l1ϕ| sign

·
x, if

·
x �= 0,

··
x �= 0,

f1 + f2, if
·
x = 0,

··
x = 0,

(50)

where
|f1| � µc(1 − θ+) (y + l1ϕ) , |f2| � µcθ+(y + l1ϕ). (51)

R1 − R2 =

{
µc(y + l1ϕ) sign

·
x, if

·
x �= 0,

··
x �= 0,

f1 − f2, if
·
x = 0,

··
x = 0.

(52)

The Cauchy problem (49), (50), (52), (48) is a physically correct statement of the
Painleve-Klein task. If we doubt in the Coulomb law of friction, then we have to show
that the Cauchy problem is not well-defined. However, it is not so. Let us transform sys-
tem (49)–(52). For this we accept the restriction r2 = l1l2. In such a case from (49)–(52)
one can derive the equations

(M1 + M2)
··
x = P1 + P2 + R1 + R2,
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M1

··
y + 2cy = (

γ

1 + γ
P2 −

1

1 + γ
P1) tan α −

tanα

1 + γ
(R1 + R2),

M1

··
z + 2cz =

l3

l2
(R1 − R2) −

ε

l2
P1, z = y + l1ϕ. (53)

The force S may be found from the equation

S = (P2 − M2

··
x)/ cosα. (54)

Let’s note that the friction forces R1 +R2, R1 −R2 are expressed in terms of the variable
z by means of (50) and (52). Initial conditions for system (53) has a form

t = 0 : x = 0,
·
x = v, y = z =

·
y =

·
z = 0. (55)

For small t > 0 the system is moving. So making use (50) and (52) we can transform
system (53) to the next form

(M1 + M2)
··
x = −µε1c |z| + P1 + P2, ε1 ≡ sign

·
x = sign v,

M1

··
y + 2cy = µε1c |z|

tan α

1 + γ
+ (

γ

1 + γ
P2 −

1

1 + γ
P1) tanα,

M1

··
z + 2c(1 −

µε1

2

l3

l2
)z = −

ε

l2
P1, (56)

The Cauchy problem (56)–(55) is well-defined and obviously has unique solution. Of
course, we must have in mind that this problem has a meaning only when

0 � ·
x � v, if ε1 = +1,

v � ·
x � 0, if ε1 = −1.

(57)

We see that there are no problems when the Coulomb law of friction is using in the
Painleve-Klein task. While we were forced to take into account an elasticity of the gap
walls, nevertheless this was not connected with the law of friction but due to physical
requirements only.

If we wish to use the rigid body model, then we have to make the passage to the
limit c→∞. In such a case we obtain the rigid body model. If c→∞, then z→ 0 and
y→ 0, but

lim
c→∞cy = T �= 0, lim

c→∞cz = Z �= 0. (58)

Instead of the Cauchy problem (53) we shall get

(M1 + M2)
··
x = P1 + P2 + R1 + R2, 2Z =

l3

l2
(R1 − R2) −

ε

l2
P1,

2T = (
γ

1 + γ
P2 −

1

1 + γ
P1) tan α −

tanα

1 + γ
(R1 + R2). (59)

Equalities (50) and (52) take a form

R1 + R2 =

{
−µ |Z| sign

·
x, if

·
x �= 0,

··
x �= 0,

f1 + f2, if
·
x = 0,

··
x = 0,
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R1 − R2 =

{
µZ sign

·
x, if

·
x �= 0,

··
x �= 0,

f1 − f2, if
·
x = 0,

··
x = 0,

(60)

where
|f1| � µ(1 − η1) |Z| , |f2| � µη1 |Z| . (61)

In (60) and (61) the next notation

η1 = lim
z→0

θ+ =

{
1, if z→ +0,

0, if z→ −0,

η2 = lim
y−l1ϕ→0

θ− =

{
1, if y − l1ϕ→ +0,

0, if y − l1ϕ→ −0
(62)

is used. As initial conditions we have to accept equalities (42).
Now we are able to compare the statements (12)–(15) and (59)–(62), (42). We see

that they are quite different, while both of them are using the model of rigid body and
standard form of the Coulomb law of friction. Let’s consider the solution of system (59)–
(62), (42). The Coulomb law has different forms for the motion and for the rest. So we
have to consider these cases separately.

Let’s suppose that
·
x = 0,

··
x = 0. Then we get

P1 + P2 + f1 + f2 = 0, 2T = (
γ

1 + γ
P2 −

1

1 + γ
P1) tan α −

tanα

1 + γ
(f1 + f2),

2Z =
l3

l2
(f1 − f2) −

ε

l2
P1, |f1| � µ(1 − η1) |Z| , |f2| � µη1 |Z| . (63)

Now we have to consider two cases

a) η1 = 1 ⇒ f1 = 0, |f2| � µ |Z| , Z � 0 (64)

and
b) η1 = 0 ⇒ |f1| � µ |Z| , f2 = 0, Z � 0 (65)

In case (64) we have

f2 = −(P1 + P2), 2T = P2 tan α, 2Z =
l3 − ε

l2
P1 +

l3

l2
P2 � 0, (66)

|P1 + P2| � µ

2

∣∣∣∣ l3 − ε

l2
P1 +

l3

l2
P2

∣∣∣∣ . (67)

Inequality (67) determines the domain of the static solution existence under η1 = 1.

In case (65) we get

f1 = −(P1 + P2), 2T = P2 tanα, 2Z = −
l3 + ε

l2
P1 −

l3

l2
P2 � 0, (68)

|P1 + P2| � µ

2l2
|(l3 + ε)P1 + l3P2| . (69)
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It is necessary to have in mind that the existence of two cases (64) and (65) does not mean
that there is non-uniqueness of solutuion. These cases correspond to different physical
conditions. Let P2 be absent as in the Painleve-Klein problem. In such a case the statical
solution exist only when P1 > 0 and

a)
µ

2

l3 − ε

l2
� 1, b)

µ

2

l3 + ε

l2
� 1 (70)

Let’s the case when
·
x = v = const and

··
x = 0. System (59)–(61) takes a form

−µε1 |Z| + P1 + P2 = 0, 2T = µε1 |Z|
tan α

1 + γ
+ (

γ

1 + γ
P2 −

1

1 + γ
P1) tanα,

(2 − µε1

l3

l2
)Z = −

ε

l2
P1. (71)

This system has a solution only when

P2 =
µε1 |εP1|

|2l2 − µε1l3|
− P1. (72)

At last, let’s consider the case
··
x �= 0. Equation (59) take a form

(M1 + M2)
··
x = −µε1 |Z| + P1 + P2, ε1 ≡ sign

·
x = sign v,

2T = (µε1 |Z| + γP2 − P1)
tan α

1 + γ
, (2 − µε1

l3

l2
)Z = −

ε

l2
P1. (73)

It is easy to see that this system has a unique solution in all cases and paradoxes of
any kind are absent. This means that paradoxes shown in previous section are result of
unsatisfactory statement of task but not due to the Coulomb law of friction. However,
we have to underline that absence of paradoxes does not mean that the task (73) is good
from physical point of view. It is not so. As a matter of fact when making a limit
passage c→∞ we have lost a number of important properties of considered system. For
example, the Cauchy problem has a meaning not only for initial condition (55). It is
possible to put, for example, the next condition at t = 0

x = 0,
·
x = v, y = a �= 0, z = 0,

·
y =

·
z = 0. (74)

In this case the limit passage c→∞ leads to contradiction since

lim
c→∞cy→∞,

what is natural from physical point of view. Besides, system (56) shows that if

µε1

2

l3

l2
> 1, (75)

then we have almost instant shut-down of the system. We can’t see it from equation
(73). So from practical point of view it is much better to use equations (56).
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Figure 6: The modified task by Painleve

5 The modified Painleve-Klein problem

We saw that the classical task by Painleve, shown on Fig.3 and Fig.4a, has no physical
meaning. Because of this we used the improved version shown on Fig.4b. There is
another possibility to improve the statement by Painleve — see Fig.6.

6 The interpretation of instant shut-down of the body

with finite mass

Let’s turn back to the simplest task considered in section 2. Let’s consider the body
moving due to inertia along the rough surface — see Fig.1, where F = 0. We saw that in
this task there are two solutions (11). At the first time an importance of this fact was
marked by F. Klein. However the most of scientists do not accept the Klein result. It is
easy to understand the main reason of this. In the Klein proposition we deal with the
instantaneous stopping of a body with the finite mass. Everybody knows that in such
a case the infinitely big force is needed what is impossible in reality. In paper [18] it
was shown the physical sense of discontinuous solution and how to choose the necessary
solution from two possible solutions. Nevertheless, as it is became clear from discussions
with other peoples, there exists the necessity to consider the Klein proposition more
carefully.

Let us consider the body moving due to an inertia along the rough surface. A friction
is determined by the Coulomb law. Using notation shown in Fig.1 we can write the next
system of equations

mÿ = F, F =

{
−µmgẋ/ |ẋ| , if ẋ �= 0

fst, |fst| � µmg, if ẋ = 0
(76)

where y is a position of the mass center C, x is a position of a point on the contact
surface, m is the body mass, g is the gravity acceleration. Initial conditions can be
chosen in the form

t = 0 : x = y = 0, ẋ = ẏ = v (77)
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System (76) is theoretically exact. However in order to solve system (76)–(77) we must
accept additional conventions that can be taken in different forms. The conventional way
is to accept the model of rigid body. In such a case we have that z = x = y and instead
of system (76) we shall get the system

mz̈ = F, F =

{
−µmgż/ |ż| , if ż �= 0,

fst, |fst| � µmg, if ż = 0,
(78)

that can be solved without any difficulties. It is easy to see that problem (77)–(78) has
two solutions

a) ż1 =

{
v − µgt, if t < v/µg,

0, if t > v/µg
and b) ż2 =

{
v, if t = 0,

0, if t > 0.
(79)

In the first of these solutions the acceleration has the discontinuity of the finite magnitude.
In the second solution the acceleration has the discontinuity of the infinite magnitude
that is considered to be impossible for the real body.

Now we have arrived to the point of discordance of opinions. First of all, we must
understand the meaning of the function z (t) in system (78) or in solutions (79). If z (t)
is a position of the mass center, then z (t) is certainly determined by the first solution
from expressions (79) whereas the second solution has no physical sense. Thus if we
are able to prove that the function z (t) in problem (77)–(78) has the only sense of the
position of the mass center, then the Klein solution b) from (6.4) must be eliminated.
Is it possible to prove this presumption? Note that problem (77)–(78) considered from
the mathematical point of view does not know our conceptualization of the meaning of
function z (t). Actually, in order to obtain system (78) from system (76) only the relation
x = y is important. It does not matter what kind of word explanations we shall use.
This means that it is impossible to find the meaning of z (t) in system (78) from formal
considerations without additional investigations. From the physical point of view it is
clear that the interpretations of functions z (t) for solutions a) and b) in (79) must be
different. For example, if z (t) is the position of contact surface, then solution b) in (79)
can be realized in reality since the contact surface has no mass while the center of mass
may keep its motion. Anyhow, in order to find the detailed answer we must investigate
the problem more carefully.

6.1 Enlarged model

From equations (76) we see that a suitable model must have at least two degrees of
freedom. The simplest model of such a kind can be taken in the form shown in Fig.7.
The system consist of the rigid framework of the mass m with a rigid horizontal rod
inside and a body of mass M that restrained to move along the rod. The spring of
stiffness c connects the body M with the framework m. The latter simulates a contact
surface whereas the body M simulates the centre of mass. The enlarged model tends to
the rigid body model as c→∞. It is not difficult to derive equations of motion for this
model. They have the form

ẍ + ω2
0 (x − y) = F/m, ÿ + ω2 (y − x) = 0 (80)
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Figure 7: The enlarged model

where the friction force F is defined by expression (76), ω2
0 = c/m, ω2 = c/M, x and

y determine the positions of the framework and the body M respectively. The initial
conditions retain prior form (77). If m �= 0, then for small t > 0 the solution of problem
(80), (77) has the form

x = vt −
1

2
µgt2 −

M

m

µg

Ω2
(1 − cosΩt) , (81)

y = vt −
1

2
µgt2 +

µg

Ω2
(1 − cosΩt) , (82)

where

Ω2 = ω2
0 + ω2 = c

(
1

m
+

1

M

)
. (83)

Solution (81), (82) is valid for such t that

ẋ = v − µgt −
M

m

µg

Ω
sinΩt > 0. (84)

The moment of stopping t = τ must be found from the equation

v − µgτ −
M

m

µg

Ω
sin Ωτ = 0. (85)

In what follows we shall assume that m/M 
 1. Now we must consider solution (81)–(82)
more carefully.

6.2 The model of rigid body

It is obvious that the enlarged model tends to the rigid body model as c → ∞. This
means that Ω→∞. In such a case from expressions (81)–(82) it follows

x = y = vt −
1

2
µgt2, t < τcl ≡ v

µg
, (86)
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Figure 8: line 1 is the classical solution; line 2 is the solution for the massless framework;
line 3 is the velocity of framework when m<<M

where τcl is the classical time of stopping. This solution is shown in Fig.8. Thus we see
that solution z1 from (79) is the limiting case

z1 = lim
c→∞ x (t, c, m) = lim

c→∞ y (t, c, m) = vt −
1

2
µgt2.

In this case the meaning of the solution z1 is obvious.

6.3 The enlarged model with the massless framework

Let us consider the case such that
m 
 M

If m → 0, then Ω → ∞ and mΩ2 → c. The time of stopping τ∗ must be found from
equation (85). Let us suppose that Ωτ∗ 
 1. In such a case the approximate solution of
equation (85) has the form

τ∗ =
m

m + M

v

µg
� m

M
τcl 
 τcl. (87)

We see that the strong inequality

Ωτ∗ =

√
m

M

√
c

M

v

µg

 1

is valid if m 
 M. For small intervals of time t < τ∗ solution (81) and (82) can be
rewritten in the next form

x = vt −
1

2

(
1 +

M

m

)
µgt2, y = vt. (88)

Now we can see the sense of solution z2

ż2 = lim
m→0

ẋ (t, c, m) =

{
v, if t = 0,

0, if t > 0.
(89)
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Here the function z2 can be only treated as the position of the framework but not the
position of the center of mass. The motion of the latter in case (89) is defined by the
expression

y =
v

ω
sinωt, ω2 =

c

M
, t � 0. (90)

This expression is valid if the force in the spring is less than µMg

|cy (t)|max � µ (m + M)g ≈ µMg. (91)

This condition will be satisfied for all times if the initial velocity satisfies the inequality

|v| � µg

√
M

c
, vc = µg

√
M

c
, (92)

where vc is a critical velocity. If this condition does not hold good, then inequality (91)
the possibility to find the interval of time when solution (89)–(90) is valid. After that it
is necessary to solve the Cauchy problem with new initial conditions.

6.4 Discussion

The second solution in (79) is called the Klein hypothesis. We saw that as a matter of
fact it is not a hypothesis but the essential corollary of the conventional statement of
all problems with Coulomb friction. The usual objection against the Klein hypothesis
must be rejected if we accept the right interpretation for the function z (t) in system
(78). For the first solution in (79) it is quite possible to use two different interpretations,
i.e. the function z (t) can be considered as the position of the mass center or as the
position of the contact surface. However for the second solution in (79) we have the
only interpretation. This means that in general case the function z (t) in (78) must be
treated as the position of some point on the contact surface. Note that in many cases
it is very important to take into account the second solution in (79) if we want to avoid
contradictions of different kind.

Above we saw that exact statement of a task about movement of a body on the
rough surface leads to unclosed system of equations. This is the direct indication on the
singularity of the given task, for a problem of closing in many cases can not be solved by
unique manner. In the given work the conventional closing of system (76) is used. As a
result we have received the closed system, but in exchange we have got a new problem.
Namely, the sense of function z(t), strictly speaking, has remained uncertain. Maybe,
the closing of system was made too roughly and rectilinearly, and the task revenges
us, throwing up the senseless decision? Or, maybe, the Nature signals us about some
important fact, which we should take into account? To the answers to these questions
also is devoted the given subsection.

It is clear, that for the answer to the put above questions it is necessary to consider a
task in the extended statement including additional the factors. It also was done above.
By result of this analysis are two central conclusions.

First: the function z(t) in system characterizes a position of point of a contact surface,
but not a position of the center of mass; it at once removes traditional objection against
use of the decision with instant shut-down, for instantly (or practically instantly) the
body of infinitesimal mass stops.
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The second conclusion: two solutions (79) cannot be understood so, that one of them
is realized actually. As a matter of fact these solutions give us only top and bottom
boundaries, between which a true solution is placed, but true movement of a body can
not be found from the system (78).

As well as any theoretical statements given conclusions require experimental check.
Let’s carry out the following mental experiment. Let’s take a bookcase with a number of
horizontal shelves for the books. The case should be easy and rigid as much as possible.
Besides we shall take a large load that can be placed on one shelf. Now it is possible to
begin experiments. Previously we have to notice, that from a point of view of system
(78) it has no importance on which shelf will be the load is located. Let’s carry out a
series of experiments, in each of which we shall use the same initial speed. In the first
experiment the load is located on the bottom shelf. Let’s measure the distance, gone the
bookcase on inertia. If the center of mass of the bookcase with a load will be located
enough close to a floor, the case will pass distance close to the predicted by the classical
solution. The diagram for speed of a point on a contact surface will be close to the
classical solution, i.e. to the line 1 on the Fig. 8. In the second experiment a load is
arranged on the second shelf from below. The center of mass of a body thus will appear
above, than in the first experiment. The measurements will show that the case will pass
smaller distance rather than in the first experiment. The diagram for speed also moves to
the left. Repeating these experiments and lifting a load higher and higher, we shall see,
that the diagram of speed will nestle on an axis of ordinates, and gone distance became
less and less. Certainly, all told carries speculative character. However it is difficult to
doubt in told, for such behavior of a body is predicted by the analysis of behavior of the
extended model.

Thus, we see, that the solutions (79) really give us only boundaries, in which there is
a required solution, but itself the true solution, describing true movement of a body, is
determined by the height parameter of the center of mass, which does not contain at all
in system (78). From here also arises uncertainty in the solution of this system allowing
defining only boundaries, in which there is a solution, but not solution.

The following picture of movement of extended model follows from all told. We admit,
that its framework is opaque and has neglectably small mass. Admit that we observe
only movement of a framework and do not know about content of this box. Let at t < 0

the system moved with constant velocity v under action of external forces, and the spring
is considered not deformed. At t = 0 action of external forces suddenly stops, and body
continues to move at action forces of friction. As the movement of this body will look
from the point of view of the external observer? As the framework is considered to be
inertialess, it instantly will stop, but the load M will continue the movement stretching
a spring. Force of elasticity of a spring, on the one hand slows down movement of a
load M, but, on the other hand, it acts on the framework. Two variants further are
possible. In the first variant, under action of force of elasticity the load M will stop at
some moment of time t > 0. It means, that force of elasticity is not bigger than the
biggest possible force of friction of rest µMg. From the point of view of the external
observer the body stands on a place, though invisible outside vibrations of a load M
proceed inside a framework. The first variant is realized, if the initial speed was less than
some critical velocity vc, determined by an inequality (92).

The second variant is more interesting. Let initial speed exceeds the critical velocity.
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Then the force of elasticity will exceed maximal force of friction of rest at the moment
of time t1, when the load M will continue the movement. At this moment of time the
framework will be broken from a place and instantly will catch up a load M, i.e. will
restore the initial position with respect to the load M. Let’s remind that the speech goes
about the inertialess framework and spring. After that the framework will stop this pro-
cess will be repeated, but already with smaller by initial velocity. The external observer
thus will observe strange picture of movement of the framework. After cancellation ex-
ternal forces the framework will stop, some time will stand on a place, then will make
the jump and again will stop. The number of such jumps depends on size initial velocity.
After the appropriate number of jumps the framework is finally will stop, and the load,
invisible to the observer, will make vibrations inside a framework. Basically, something
similar can be observed in experiment. In this hypothetical case not only velocity, but
also distance will be discontinuous functions of time. Certainly, if to a framework to
attribute as much as small weight, the continuity of movement restores. But at very
small weight this continuous movement will appear enough close to described above.
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The Main Direction of the Development of Mechanics

for XXI Century∗

Abstract

The multi-spin continuum mechanics is an extension of the Cosserat continuum
(single-spin continuum). The report presents a general theory and its applications
to the derivation of the equations by Maxwell.

1 Introduction

Mechanics before Newton had been remaining by a collection of many important, but
separated facts. Newton was the first, who set up a problem of construction of mechanics,
as a science of the first principles. As the first principles Newton pointed out the three
Laws of Motion, but he did not consider them as a sufficient foundation for a general
construction of mechanics. For example, in work [1] Newton wrote: “Vis inertia is a
passive principle, by means of which bodies stay in their motion or rest, receive motion,
proportional applied to them force, and resist so, as far as meet a resistance (this is the
statement of all three laws, P. Zh.). Only because of this there could not be a motion in
the world. Other principle was necessary to reduce bodies in motion and, since they are
in motion, one more principle is required for preservation of motion. For from various
additions of two motions it is quite clear, that in the world there is not always the same
momentum. If two balls, joint thin rod, rotate round a common center of gravity by
uniform movement, while the center is uniformly gone on a direct line conducted in a
plane of their circular movement, the sum of motions of two balls in that case, when
the balls are on a direct line circumscribed by their center of gravity, will be more,
than the sum of their motions, when they are on a line, perpendicular to this direct.
From this example it is clear, that the motion can be received and to be lost” — see
p.301. These words were written in 1717 and give clear impression about a level of
development of mechanics in the first quarter of the XVIII century. The programmed
Newton’s idea about construction of mechanics on the base of the first principles had
played a huge stimulating role. Euler carried out the realization of this program. In
period with 1732 on 1755 Euler has developed the concept, which now is accepted as

∗Zhilin P.A. The Main Direction of the Development of Mechanics for XXI Century // Lecture
prepared for presentation at XXVIII Summer School – Conference, St. Petersburg, Russia, 2000.
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Newtonian mechanics. In this concept the translation of mechanics on language of the
differential equations was made. The stage of the construction of Newtonian mechanics
in the fundamental plan was finished by the memoir of Euler[2] “Discovery of a new
principle of mechanics”, published in 1752. In that time Euler was considering, that the
principle, opened by him, is possible to consider “as a unique base of mechanics and
other sciences, which treat about movement of any bodies” — see [3]. Unfortunately,
this point of view dominated in science down to 1925, when it finally had failed, and
Newtonian mechanics was deprived with the status of fundamental science. Certainly,
rather continuous period had proceeded to this end, when Newtonian mechanics was
not able to describe the important physical concepts. Probably, for the first time this
problem has arisen in the investigations of J. Maxwell, when he tried to describe true,
i.e. not induced, magnetism, but it was not possible. Finally this period was finished by
the creation of quantum mechanics.

Between that, in 1771, L. Euler not only clearly had realized an incompleteness of
Newtonian mechanics, but also had indicated the path of its extension. In Newtonian
mechanics there is only one form of motion, namely translation motion described by
transposition of a body-point in space. However in many natural processes spinor mo-
tions play the main role. In such a motion the body-point does not change the position in
space, but has own rotation. The spinor motions are the main method of accumulation
and preservation of energy in the Nature. Not surprised therefore, that Newtonian me-
chanics has appeared powerless at the level of the microcosmos, where the spinor motions
in essence cannot be ignored. In 1776 Euler publishes memoir “New method of deter-
mination of motion of rigid bodies” [4], where two independent Laws of Dynamics are
stated for the first time: the equation of balance of momentum and equation of balance
of kinetic moment (or moment of momentum in accepted, but unsuccessful, terms). This
work opens new era in mechanics. Under an appropriate development of ideas of this
work modern physics would look completely differently. Unfortunately, the comprehen-
sion of ideas of Euler has taken place only at the last quarter of XX century. At the end
of XVIII century only J. Lagrange had realized significance of Euler’s work, but he had
not agreed with its main conclusions. In essence problem was reduced to a possibility or
impossibility of the proof of the Archimedes law of the lever. Lagrange, as opposed to
Euler, considered that the law of the lever is a corollary of the Newton laws. A large part
of extensive introduction to the treatise “Analytical mechanics” [5] Lagrange devotes to
the proof of the law of the lever. The Lagrange proof looks rather convincingly, but con-
tains an error, which was not trivial for that time. Namely, Lagrange as the principle of
the sufficient basis used reasons of a symmetry, which, as it is well known now, are quite
capable to replace by itself conservation laws. In particular, the symmetry concerning a
turn round some axes is equivalent to the absence of the moment round the same axes.
The Lagrange method of description of mechanics has made a great impression on sci-
entific community. The stable, but faulty, point of view had established that Lagrange’s
mechanics is quite able to replace by itself Newtonian mechanics. Actually mechanics of
Lagrange is a rather poor subclass of Newtonian mechanics and it can not be considered
as self-sufficient science about natural phenomena. It follows, for example, from the fact
that the fundamental concepts like space, time, forces, moments, energy and etc., are not
discussed and can not be introduced into consideration in Lagrange’s mechanics, where
all these concepts are used, but are not determined. Unfortunately, many theorists with
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a mathematical kind of thinking obviously underestimate importance and complexity of
originating here problems. Besides mechanics of Lagrange is not suitable for the descrip-
tion of open systems, what all-real systems are. All said is quite valid with respect to
mechanics of Hamilton that has mathematical dignities, but is very poor from a physical
point of view. Main defect of Lagrange-Hamilton mechanics is the false impression, cre-
ated by these theories, about a completeness of classical mechanics in the fundamental
plan and, therefore, about its boundedness. Just this false impression has allowed to M.
Plank to say the following words [6]: “Today we must recognize that... frameworks of
classical dynamics ... have appeared too narrow to envelop all those physical phenomena
that do not lend to direct observation by our rough organs of sense... The proof of this
conclusion is given to us by the crying contradiction, that come to light in the universal
laws of heat radiation, between the classical theory and experience”. This point of view
had become conventional in physics. The mechanics had evaded from a discussion of
these hard questions and continued researches on the important applied problems.

Let’s remind one more statement of M. Plank[7]: “The mechanical phenomena, or
movements of material points, and all set of the electrical and magnetic phenomena as
a single unit are completely separated. This by two area settle (exhausted) all physics,
as all other parts of physics — acoustics, optics, and heat — can be quite reduced
on the mechanics and electrodynamics. Final association of these two last classes of the
phenomena, that would present by itself the crown of a building of theoretical physics, still
it is necessary to give to the future”. This statement by M. Plank causes some objections.
First of all, the mechanical phenomena are not reduced at all to movements of material
points, i.e. to Newtonian mechanics. Leonard Euler proved the basic incompleteness
of Newtonian mechanics in 1776. Further, satisfactory theory of the electromagnetic
phenomena is not developed till now. At last, more than doubtfully, that association of
these theories (even if they would exist) would be a completion of theoretical physics,
for obviously there are phenomena leaving the frameworks of these theories in their
modern kind. Nevertheless, problem of association of the mechanics and electrodynamics,
specified by M. Plank, exists and should be solved. The situation existing in a mechanics
and physics can be called paradoxical. On the one hand, there are actual phenomena,
which can not be circumscribed within the framework of classical mechanics from the
point of view of the first principles. On the other hand, nobody has shown an inaccuracy
of these principles. From this it follows, that the principles of Newtonian mechanics are
necessary, but not sufficient, for the full description of the known experimental facts.
This means, that Newtonian mechanics should be extended by adding of new principles.
The statement of these new principles should emanate from intuitive understanding of a
nature of those phenomena, which can not be circumscribed by methods of Newtonian
mechanics. Certainly, this very complex problem can not be solved by simple means and
requires special researches. If the mechanics does not realize necessity of the indicated
researches and will limit by the analysis traditional (let even very important) problems,
then its future has not any perspectives. If someone doubts of this, he should pay
attention to the prompt vanishing of mechanics in the educational and research programs
at the end of XX century.

The present article grows out desires of the author to understand the electrical and
magnetic phenomena from the point of view of the principles of mechanics. The analysis
of the known facts has shown, that the spinor motions,which are absent in Newtonian
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mechanics, are necessary for a description of the electromagnetic phenomena. Because of
this the author thought that the full description of electromagnetism could be executed
in the frameworks of Eulerian mechanics. The brief exposition of the main principles of
Eulerian mechanics can be found in the paper [8], where the spinor motion is entered
in terms of a tensor of turn. The main properties and various representations of the
tensor of turn are stated in [9, 10]. The description of classical electrodynamics is given
in terms of mechanics in the paper [11]. Besides in [11] the explanation of the known
fact about inapplicability of classical electrodynamics for the description of a structure
of atom is given. Consequent investigations have shown necessity of an introduction
of multi-spin particles. In other words, Eulerian mechanics requires some additions to
describe a presupposed structure of atom. Said above, probably, explains a title of the
given work. Nevertheless, when describing the main results, the author considers only
the pure mechanical aspects, since electromagnetic interpretations of these results are far
from a desirable definiteness up to now.

In order to avoid a misunderstanding let us consider the basic terms. In what follows
all considerations take place with respect to an inertial system of reference[13].

Newton’s Mechanics contains the laws of dynamics of spinless particles. The state of
the particle is defined by the vector of position R (t) , the vector of momentum mR (t) ,

the total energy U = K + const, where K = 0.5mṘ · Ṙ is the kinetic energy. The change
of the momentum is determined by the vector of force F. Besides, there are derived
quantities: the vector R×mṘ is called the moment of momentum of the particle about
the origin, the vector R×F is called the moment of the force F. In Newton’s Mechanics
only so called central forces are admissible. The basic model of Newton’s Mechanics is
the harmonic oscillator. The basic equation of the simplest form is

mR̈+cR = 0. (1)

There is no need to speak about other aspects of Newton’s Mechanics.
Euler’s Mechanics contains the laws of dynamics of single-spin particles. The motion

of the single-spin particle is defined by the vector of position R (t) and by the tensor of
turn P (t) . The velocities can be found from the equations

V (t) = Ṙ (t) , Ṗ (t) = ω (t)×P (t) , (2)

where the second equation is called the Poisson equation [8]. The total energy U of
the particle is the sum U = K + const, where the kinetic energy is determined by the
quadratic form

K =
1

2
mV ·V + V · P ·B · PT ·ω+

1

2
ω · P · C · PT ·ω, (3)

where tensors of second rank B and C = CT are the inertia tensors in the reference
position, the scalar m is the mass. Now we are able to introduce the vector of momentum
K1 and the vector of kinetic moment K2 by means of the expressions

K1 = ∂K/∂V =mV + P ·B ·PT · ω, (4)

K2 = R × K1 + ∂K/∂ ω = R × K1 + V ·P ·B ·PT + P · C · PT · ω, (5)
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where the underlined term is called the moment of momentum. In Euler’s Mechanics the
change of momentum is determined by the force F and the change of kinetic moment is
determined by the vector of moment M

M = R × F + L, (6)

where the vector L is called the torque. In general case the torque can’t be determined
in terms of F. The first and the second laws of dynamics [4] in Euler’s Mechanics have
the form

K̇1 = F, K̇2 = M = R × F + L. (7)

The more detailed definitions may be found in the paper[8]. The basic model in Euler’s
Mechanics is the model of rigid body oscillator. In the simplest case the equations of
motion of rigid body oscillator, i.e. the rigid body on an elastic foundation, can be derived
from the equations (4) − (7) under some assumptions about the elastic foundation [14].
These equations have the form [14]

A ω̇+ cθ = 0, θ̇ = ω−
1

2
θ × ω+

1 − g

θ2
θ× (θ × ω) , g =

θ sinθ

2 (1 − cosθ)
, (8)

where θ is a vector of turn [9, 10, 14] θ = |θ| . We see that even in the simplest case equa-
tion (8) has much more complex form then equation (1) for a usual oscillator. However
for the plane vibrations we have θ × ω = 0. In such a case equation (8) coincides with
equation (1) . Note that equation (8) corresponds to rotational degrees of freedom only,
i.e. the body has a fixed point. In general case we have some combination of equations
like (1) and (8).

When speaking about Euler’s Mechanics it is necessary to point out the contribution
of C. Truesdell [15, 16] who had studied Euler’s works published after 1766 and had made
them the property of scientific community.

Mechanics of multi-spin particles will be considered in the next sections of the paper.

2 Kinematics and Dynamical Structures of the Multi-
Spin Particle

The multi-spin particle A is the complex object consisting of a carrier body A1 and
rotors Ai (i = 2, 3, ..., N) inside of A1. Let Ri (i = 1, 2, ..., N) be the position vectors
of the mass center of Ai and mi is the mass of the particle Ai. Let’s accept that the set
of points Ri is a rigid body. Let Pi be the turn-tensors of the bodies Ai. Then we have

Ri = R + P1 · ρi, R =
1

m

N∑
i=1

miRi, m =

N∑
i=1

mi, (9)

where R is the center of mass of A, the vectors ρi are the position vectors of the mass
center of Ai with respect to the point R in the reference position. Thus the motion of a
multi-spin particle A is determined in terms of 3(N + 1) scalar functions

R (t) , P1(t), P2(t), ... PN(t). (10)
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The velocities of the multi-spin particle are determined from the next equations

V(t) =
·
R (t) ,

·
Pi (t) = ωi (t) ×

·
Pi (t) . (11)

We shall consider that rotor Ai is the body of rotation with the axis of symmetry n′
i,

which is supposed to be fixed with respect to the carrier body A1. Because of this we
have

n′
i = P1 · ni, i = 2, ..., N, (12)

where ni are determined in the reference position. The turn-tensor of the carrier body
can be represented in many different, but equivalent, forms

P1 = T2 · Q (ψ2n2) = T3 ·Q (ψ3n3) = ... = TN ·Q (ψNnN)⇒
Ti = P1 ·QT (ψini) , (13)

where Q(ψini) is the turn around axis ni by the angle ψi, Ti is the turn around axis
orthogonal to the axis ni. For the turn-tensors Pi we have the analogous expressions

Pi = Si ·Q (ϕini) . (14)

Since the axes ni are fixed with respect to the carrier body A1 we have the conditions

Ti = Si ⇒ Si = P1 · QT (ψini) .

Now the equations (14) take a form

Pi = P1 · QT (ψini) ·Q (ϕini) = P1 ·Q (βini) ,

βi = ϕi − ψi, i = 2, 3, ..., N, (15)

where βi is the angle of the turn of the rotor A1 with respect to the carrier body A1.

Thus we see that the motion of the multi-spin particle can be described in terms of
6 + N − 1 scalar function, i.e. it has N + 5 degrees of freedom. In what follows we shall
accept

P � P1, ω � ω1. (16)

Making use of (15) one can find

ωi = ω + P·
·
βini = ω+

·
βin

′
i, n′

i = P · ni, i = 2, 3, ..., N. (17)

Let’s define the kinetic energy Ki of the body Ai by the quadratic form

Ki =
1

2
miR·

i · R·
i +

1

2
ωi · Pi ·Ci · PT

i · ωi, (18)

where Ci is the central tensor of inertia of the body Ai in the reference positions. For
the rotors we have

Ci = λini ⊗ ni + µi (E − ni ⊗ ni) , i = 2, 3, ..., N, (19)
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where λi, µi are the axial central moment of inertia and the equatorial central moment
of inertia of the rotor Ai respectively. From the equations (15) and (19) it follows

Pi ·Ci ·PT
i = P ·Ci ·PT . (20)

From the equation (9) it follows

Vi = R·
i = V + ω× (Ri − R) . (21)

The momentum K1i of the body Ai is defined as

K1i =
∂Ki

∂Vi

= miVi = mi (V + ω× (Ri − R)) = miV + Bi · ω,

Bi = mi (R − Ri) × E. (22)

The momentum K1 of the multi-spin particle is defined by the expression

K1 =

N∑
i=1

K1i = mV+

(
N∑

i=1

Bi

)
· ω = mV,

N∑
i=1

Bi = 0. (23)

The second equality in (23) follows from (9). Let’s calculate the kinetic moment K2i of
Ai

K2i = Ri × K1i +
∂Ki

∂ωi

, (24)

where the first term in the right side is called the moment of momentum and the second
term will be called the dynamical spin or the own moment of momentum of Ai. Making
use of the formulae (22), (18), (9), (17), (19), (20) one can obtain

K2i = miRi × V+
(
Ri × Bi + P ·Ci · PT

) · ω+λi

·
βin

′
i, β1 = 0. (25)

The kinetic moment of the multi-spin particle K2 is defined by the expression

K2 =

N∑
i=1

K2i = R×mV + P ·C ·PT · ω+

N∑
i=2

λi

·
βin

′
i, (26)

where the tensor C has a form

C =

N∑
i=1

(Ci − mi (r − ri) × E× (r − ri)) , (27)

and the vectors r and ri determine the mass centers of the particle A and of the bodies Ai

in the reference position respectively. The total kinetic energy of the multi-spin particle
is determined by the expression

K =
1

2
mV ·V+

1

2
ω · P · C · PT ·ω+

1

2

N∑
i=2

λi

( ·
β

2

i + 2
·
βiω · n′

i

)
. (28)

Now we are able to write down the laws of motion of the multi-spin particle.
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3 The Laws of Motion of a Multi-Spin Particle

The multi-spin particle has N + 5 degrees of freedom. Thus we need to formulate N + 5

equations to find the next unknown functions

R (t) , P (t) , βi (t) , i = 2, 3, ..., N. (29)

First of all, we must formulate the laws of dynamics by Euler.
The equation of the momentum balance or the first law of dynamics by

Euler
·
K1 = F, (30)

where K1 is determined by the expression (23), and the vector F is the force acting on
the multi-spin particle.

The equation of the kinetic moment balance or the second law of dynamics
by Euler

·
K2 = R × F + L, (31)

where the vector L is called the torque and in general case it can’t be defined in terms of
a force. The equations (30) and (31) give to us 6 equations. Thus we need to formulate
N − 1 additional equations. For this end let us consider

The equations of motions of the rotors Ai

·
K1i = Fi,

·
K2i = Ri × Fi + Li, i = 2, 3, ..., N (32)

where Fi and Li are the force and the torque acting on the rotor Ai from the carrier
body A1. Let’s represent the torque Li in the next form

Li = Lmin′
i + L∗

i , n′
i · L∗

i = 0, Lmi = −ηi

( ·
βi − ωi

)
, ηi > 0, (33)

where ωi = const and ηi = const are the parameters of the particle. Making use of the
results of the previous section one can obtain

·
K2i = Ri × Fi +

(
(λi − µi) (ω · n′

i)n
′
i + µiω + λi

·
βin

′
i

)·
. (34)

Substituting this expression into the second equation (32) and multiplying the resulting
equation by the vector n′

i we obtain the additional N − 1 equations

λi

( ·
βi + ω · n′

i

)·
+ ηi

( ·
βi − ωi

)
= 0, i = 2, 3, ..., N. (35)

The equations (30), (31), (35) give to us the complete system of equations of motion for
the multi-spin particle.
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4 The Equation of the Energy Balance

Let us formulate the third fundamental law, i.e. the equation of the energy balance

(K + Up)
·
= F · V + L · ω+δ, (36)

where Up is an intrinsic energy of the particle, δ is the velocity of the energy input
into the particle. In what follows we shall consider that Up = const. This means that
the particle does not contain the elastic elements. In the considered case it is easy to
calculate δ. Indeed, multiplying (30) by the vector V and so on we obtain

·
K = F · V + L · ω−

N∑
i=2

ηi

·
βi

( ·
βi − ωi

)
. (37)

From the comparison of the equations (37) and (36) we see

δ = −

N∑
i=2

ηi

·
βi

( ·
βi − ωi

)
. (38)

The quantity δ is generated by the external supply of energy, for example, by the electrical
device.

5 Continuum of the Multi-Spin Particles. The law of

the Particle Conservation

Let’s consider some inertial system of reference. Let Z be a set of the multi-spin particle.
Let V be some domain that is fixed with respect to the system of reference. The boundary
of V is the closed surface S = ∂V. Let ρ(x,t) be a number of the particles in the infinitely
small neighborhood of the point x ⊂V at the actual instant of time t

ρ (x,t) ≥ 0. (39)

Let’s formulate the law of the conservation of the particles

d

dt

∫
(V)

ρ (x,t)dV = −

∫
(S)

ρn ·VdS,

∫
(S)

n· (ρV) dS =

∫
(V)

∇ · (ρV) dV. (40)

From this it follows
dρ

dt
+ ∇ · (ρV) = 0. (41)

This is a local form of the law of the particles conservation.

6 The First Law of Dynamics by Euler

The domain V contain the next quantity of the momentum

K∗
1 =

∫
(V)

ρ (x,t)K1 (x,t)dV (x) , (42)
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where the momentum of a particle K1 is defined by the expression (23). Then the first
law of dynamics can be written in the form

d

dt

∫
(V)

ρK1dV =

∫
(V)

ρFdV +

∫
(S)

T(n)dS −

∫
(S)

ρ (n ·V)K1dV.

For the last term we have∫
(S)

n· (ρV ⊗ K1)dS =

∫
∇

(V)

· (ρV ⊗ K1)dV. (43)

Now the first law can be rewritten in such a form

d

dt

∫
(V)

ρK1dV

O(ε3)

=
d

dt

∫
(V)

[ρF − ∇ · (ρV ⊗ K1)] dV

O(ε3)

+

∫
(S)

T(n)dS

O(ε2)

.

From this we see that the next equation is valid∫
(S)

T(n)dS = 0. (44)

Making use of standard considerations the stress tensor can be introduced

T(n) = n ·T. (45)

Thus we have ∫
(V)

[
(ρK1)

·
− ρF + ∇· (ρV) K1 + ρV · ∇K1 − ∇ · T]dV = 0.

In the local form the first law can be represented as

∇ · T + ρF = ρ(
·
K1 + V · ∇K1), K1 = mV(x, t), (46)

where m = const is the mass of the particle that is placed in the point x at the actual
instant of time. The quantity ρm is the mass density. In the right-hand side of the first
equation (46) the material derivative of K1 is written.

7 The Second Law of Dynamics by Euler

The equation of the balance of the kinetic moment in the integral form can be written
as

d

dt

∫
(V)

ρK2dV =

∫
(V)

ρ (R × F + L)dV +

∫
(S)

(
R × Tn + M(n)

)
dS −

∫
(S)

ρ (n · V)K2dS.

(47)
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where K2 is defined by the expression (26), L is a mass density of the external torque.
By means of the standard consideration it is easy to derive the Cauchy formula

M(n) = n ·M. (48)

and the local form of the second law

∇ · M + T× + ρL = ρ(K̇2 + V · ∇K2), (49)

where K2 is the dynamical spin of a particle

K2 = P(x,t)·C · PT (x,t) · ω (x,t)+

N∑
i=2

λiβ̇i (x,t)n′
i (x,t) , (50)

and the tensor C is defined by the expression (27). To this equation it is necessary to
add the equation of motion for the rotors (35)

λi

( ·
βi (x,t) + ω (x,t) ·n′

i (x,t)

)·
+ ηi

( ·
βi (x,t) − ωi (x)

)
= 0, i = 2, 3, ..., N. (51)

8 The Equation of the Energy Balance

Let’s introduce the total energy in the domain V

E =

∫
(V)

ρ(K + U)dV, (52)

where K, U are the density of the kinetic and intrinsic energy respectively.
The equation of the energy balance is the next statement

d

dt

∫
(V)

ρ(K + U)dV =

∫
(V)

ρ [F · V + L · ω+q] dV+

∫
(S)

(Tn ·V + Mn · ω + hn)dS −

∫
(S)

ρn · V(K + U)dS, (53)

where

hn = n · h. (54)

The equation of the energy balance in local form can be written as

ρ

[
dU

dt
+ V · ∇U

]
= TT · · (∇V + E× ω) + MT · ·∇ ω + ∇ · h+ ρq. (55)
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9 Continuum by Lord Kelvin

Let’s accept the next assumptions

V = 0, T = 0 ⇒ ρ = const. (56)

In such a case the second law by Euler takes a form

∇ · M + ρL = ρK̇2. (57)

The equation of the energy balance can be simplified as well

ρ
dU

dt
= MT · ·∇ω + ∇ · h + ρq. (58)

Let’s accept one more restriction

M = H× I ⇒ ∇ · M = ∇× H, (59)

where I is unit tensor. Then equation of the energy balance (58) for the isotermic
processes takes a form

ρ
dU

dt
= −H · ∇ × ω. (60)

For the kinetic moment we accept the notation

c−1E = ρK2 = P · C · PT ·ω +λ0β̇0P · n, c = const, (61)

where
C = λn⊗ n + µ(I − n⊗ n). (62)

Making use of (59) and (61) equation (57) can be replaced by

∇ × H + ρL =
1

c

d

dt
E. (63)

This equation has a form of the first Maxwell equation. Let the turn-tensor P be repre-
sented in the form

P = Q(θ) · Q(ϕn), θ · n = 0, (64)

where the vector θ and the angle of own rotation are supposed to be small. In such a
case we have

ω = θ̇ + ϕ̇n = ϑ̇, ϑ = θ + ϕn. (65)

Equation (60) can be rewritten now as

ρ
dU

dt
= −H · d

dt
∇ × ϑ. (66)

Let’s accept the simplest representation for the specific internal energy

ρU =
1

2
κ|∇ × ϑ|

2
, κ = const. (67)
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Then for the vector H we obtain

H = −κ ∇ × ϑ. (68)

If we take into account equality (62) then expression (61) can be rewritten as

c−1E = µθ̇ + (λϕ̇ + λ0β̇)n + λ0β̇θ × n. (69)

In order to get the simplest case, let’s accept the restrictions

λ = µ, λ0 = 0. (70)

Then we obtain

E = µc
d

dt
ϑ. (71)

From equations (68) and (71) it follows

∇× E = −
1

c

d

dt
H. (72)

Let’s write down equation (63) and (72) together

∇ × H + ρL =
1

c

d

dt
E, ∇× E = −

1

c

d

dt
H, κ = µc2. (73)

The obtained equations are the classical equations by Maxwell.
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A.I. Lurie — Works on Mechanics∗

Abstract

The report is devoted to contribution by A.I. Lurie in the development of me-
chanics in Russia. It is necessary to underline, that the scientific interests of A.I.
Lurie were extremely wide and concerned to different fields of mechanics and the
control process. The books and textbooks by A.I. Lurie, which were studied by hun-
dred thousand of students, engineers and scientific workers, show high samples of
scientific creativity. In 1927 the Leningrad mechanical society was founded, which
has played an important role in the development of mechanics in USSR. The one of
organizers of this society was A.I. Lurie. Among many achievements of the society
there was organization of the issuing of well known journal “Applied Mathemat-
ics and Mechanics”. A.I.Lurie was an editor of translations of many remarkable
books on a mechanics. A.I. Lurie is recognized by the scientific community as the
distinguished scientist - encyclopedist. A.I. Lurie was by a member of National
Committee of USSR on theoretical and applied mechanics, and in 1961 he was se-
lected by corresponding member Academy of Sciences of USSR. The name of A.I.
Lurie has come in the history of mechanics in Russia for ever.

1 Introduction

A man cannot choose his birthday or birth place. However, time and habitation country
significantly influence upon the making of a person and determine the character of his
activity. Nevertheless, at all times and in all countries the individuals are born, who are
realized as self-independent and self-sufficient creatures. Such persons play the role of
“evolution catalysts” for the society, into which they are involved. The problems solved
by them are never accidental but determined by the higher necessities of the society. The
main feature of a realized individual is a capacity of a person not only to perceive intu-
itively the society higher necessities but to take them as a guide to the action. Therefore,
this is impossible to make a correct evaluation of a contribution of any person into the
evolution of a community (either of its certain part) if one does not realize clearly the
state of this community and its necessities at the evolution stage considered. No doubt,
Anatoly Isakovich Lurie had realized himself as a self-independent individual, whose ver-
satile fruits of work we sense so distinctly. The aim of this presentation is a discussion of

∗Zhilin P.A. “A.I. Lurie — Works on Mechanics” // Proceedings of XXVIII Summer School – Con-
ference “Advanced Problems in Mechanics”, St. Petersburg, Russia, 2001. P. 1–13. (In Russian)
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A.I. Lurie’s contribution into evolution of mechanics in Russia. A.I. Lurie had began his
self-independent investigations in mechanics in 1925 all at once on graduating from the
Faculty of Physics and Mechanics of Leningrad Polytechnical Institute. Think of Russia
being in 1925! The previous decade resulted in an extremely hard state for Russia. The
First World War, the October Socialist Revolution, and, finally, the fratricidal civil war,
which is the worst and the most dangerous among all kinds of wars. All this had led to
the scarcity and dissociation of the Russian brain-power to nearly complete destruction of
relatively weak industry together with the total absence of finances for purchase of needed
equipment. In addition, Russia was, actually, in a complete isolation from the all-world
community. Consequently, development of the native industry became one of immedi-
ate tasks. Traditionally, only ship building was rather well-developed, but other fields
of industry (such as mechanical engineering, power engineering, turbine construction,
instrument-making and aircraft industries, etc.), they all were present in embryo. Every-
thing mentioned above had to be built up anew. First of all, tens of thousands of skilled
engineers were to be trained. It should be taken into account, that these skilled engineers
had to be prepared from a relatively uneducated medium, since schools worked under
abnormal conditions in 1914-1922 as well. For training a skilled engineer brain-power
competent specialists and, also, text-books were needed. It cannot be said that there
were no scientists in the field of mechanics in Russia. Suffice it to recall such first-class
scientists as N.E. Zhukovsky, I.G. Bubnov, I.V. Meschersky, A.A. Fridman, A.N. Krylov,
P.F. Papkovich, E.L. Nicolai, and many others. However, they were extremely few in
number for such a vast country as Russia. As for text-books on mechanics for universi-
ties, they were actually absent. Just then, the generation of Russian scientists, to which
A.I. Lurie belonged, had to start the work. Creative work of the above-mentioned scien-
tists received a high appraisal by the launching of the first in the world artifical satellite
on October 4th, 1957, along with the fact that to 1960 the technical education in Russia
was recognized as one of the best in the world by the international community.

On graduating from the Polytechnical Institute A.I. Lurie hold the post of a lecturer
at the chair “Theoretical Mechanics” of the institute. Hereafter, A.I. Lurie began his per-
sistent research work. It is necessary to emphasize that A.I. Lurie was utterly interested
in various fields of mechanics and of control theory. It is accounted for by the fact that
A.I. Lurie was tightly concerned with organizations engaged in development and pro-
duction of new technique. Among the organizations, Leningradskii Metallicheskii Zavod
(a Leningrad Metal Plant), Osoboe Tekhnicheskoe Byuro (the Special Technical Depart-
ment), and Osoboe Konstruktorskoe Byuro (the Special Constructor Department) to be
pointed out in the first place. As it is known, creation of a new technique is accom-
panied by numerous problems associated with mechanics and the control theory. Over
the post-war years, contacts of A.I. Lurie with industrial organizations were essentially
widened. Multiform demands of practice made the scientist to perform his investigations
simultaneously in various directions. Therefore, in describing the works of A.I. Lurie on
mechanics we ought to divide the works into separate groups and to break the chrono-
logical succession. As for investigation on the control theory, into which A.I. Lurie made
a valuable contribution, they represent the subject of a separate consideration.
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2 At the source of the Leningrad School of Mechanics

A.I. Lurie was not only the eminent Scientist, but a striking Teacher as well. He left
hundreds of disciples in mechanics, many of them became world-known scientists. Mono-
graphs and text-books by A.I. Lurie, by which hundreds of thousands of future engineers
studied mechanics, continue to remain brilliant examples of scientific creative work. The
scientific style of A.I. Lurie was remarkably rigorous and clear, without any pseudo-
scientific excesses. The scientist gave a lot of efforts to the development of a mathemat-
ical technique that allowed to solve the problems in the most effective and clear way. In
particular, A.I. Lurie was a staunch devotee to the direct tensor calculus, and he made
a remarkable contribution into development and introduction of this new technique.

In 1927, Leningrad’s Mechanical Society had been established, which played a great
role in development of mechanics in the USSR. Prof. E.L. Nicolai was the organizer and
the permanent President of the Society, whereas A.I. Lurie was its Scientific Secretary.
Among many achievements of the Society, one should point out the organization of edi-
tion of the first in the USSR specialized journal on mechanics and applied mathematics.
Initially, beginning from 1929, the title of the journal was “Vestnik Mekhaniki i Priklad-
noy Matematiki” (“News of Mechanics and Applied Mathematics”). In 1933, the journal
was transformed into an all-union periodic edition “Applied mathematics and mechanics”
(“Prikladnaya Matematika i Mekhanika”). Up to 1937, when edition of the journal was
transferred to Moscow and referred to the Institute of Problems in Mechanics, Russian
Academy of Sciences USSR, E.L. Nicolai was appointed as the Editor-in-Chief, whereas
A.I. Lurie worked as the Executive Editor.

As it was mentioned above, at the time the special literature on mechanics was, ac-
tually, absent in Russia. One had to study mechanics by English, German, and French
original publications, which was possible for A.I. Lurie but not for many those, to whom
the knowledge of mechanics was necessary. Therefore, there were severe need in edition of
scientific literature translations. A.I. Lurie was actively involved in this important work.
In particular, a lot of translations of remarkable monographs were edited by the scien-
tist, for instance, such as E. Trefftz, Mathematical theory of elasticity (1934); Hekkeler,
Statics of elastic body (1934); P. Pfeiffer, Oscillations of Elastic Bodies (1934); Analyt-
ical mechanics by Lagrange (1938); C. Truesdell, First Course in Rational Continuum
Mechanics (1975) and so on. Note that in thirties, the translations of foreign editions
played a significant role in training the engineers in the USSR.

Scientific merits of A.I. Lurie are universally recognized. The world scientific com-
munity knows him as a prominent scientist-encyclopedist. A.I. Lurie was a member of
the National Committee of the USSR on Theoretical and Applied Mechanics, and in
1961 Prof. A.I. Lurie was elected as a corresponding member of Academy of Sciences of
the USSR. V.V. Novozhilov, Academician of RAS of the USSR, stated that A.I. Lurie
was attributed to those selected scholars, for whom the highest scientific titles were their
names.

3 Operational calculus

Early works of A.I. Lurie were devoted to hydrodynamics of viscous liquids. This was the
subject of his thesis defended in 1929. Generally speaking, no theses were defended at
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that time. Nevertheless, A.I. Lurie wrote his thesis and it was discussed at the meeting of
Academic Council. V.A. Fok and A.A. Satkevich, well-known professors, were the refer-
ees. The thesis was defended successfully, and a positive decision was sent to the Council
Record Office. In the USSR the advanced degrees were re-established only in 1933, and
just at that time A.I. Lurie gained a honorary doctorate. Note that earlier he had at-
tained a Professor title already. Although the works on hydrodynamics of viscous liquids
are not among most important achievements of A.I. Lurie, nevertheless, the scholar pi-
oneered in applying an approach based on operational calculus, which was new for this
field of mechanics. The approach was approved by Academician V.A. Fok, and he ad-
vised A.I. Lurie to continue investigations in this direction. These investigations resulted
in publication of the paper “On the theory of the sets of linear differential equations with
constant coefficients” (Trudy Leningradskogo Industrialnogo instituta – Transactions of
Leningrad Industrial Institute, 1937, No. 6, pp. 31–36) and of a monograph “Operational
calculus” (Moscow–Leningrad: ONTI, 1938, in Russian). Later, these investigations were
developed and resulted in creation of A.I. Lurie’s symbolic method discussed below in
section devoted to the elasticity theory.

The idea of operational calculus was proposed by Oliver Heaviside in 1893. Further
this idea was extended in works of T.J. Bromwich, E.P. Adams, H. Jeffreys and some
other western scientists. Usually, operational methods were applied to the calculation of
electric circuits. Meanwhile, at the end of thirties they did not have a wide application in
mathematical physics. As H. Jeffreys pointed out, this happened since there were some
obscurities in the basic theory and there were no systematic description of operational
methods. For the first time, the systematic theory of operational methods was described
in the book Harold Jeffreys. Operational methods in mathematical physics. London,
Cambridgde, 1927. The second edition of the book was published in 1931. We see that
in 1930 the operational calculus became rather popular, mainly, in England. Therefore
it would not be correct to speak about A.I. Lurie’s contribution into operational calcu-
lus. The scientist is worthy in another matter. Firstly, the West is the West, whereas
Russia of thirties was a country, where it was a great problem to become acquainted
with achievements of foreign scientists. Secondly, abstract ideas, let them even be rather
perspective, were not completely appropriate for the technical education in Russia of that
time. There was a need in convincing applications of the ideas to the concrete technical
problems. Just that was made by A.I. Lurie. In particular, two well-known problems
were considered in his paper of 1937 mentioned above. The first one was the problem
of a body in a flow of viscous liquid. On the basis of operational calculus, there was
derived a solution, merely in a few lines, which had been obtained by L.S. Leybenson in
1935 by another method. The second example was a derivation of the general solution
for equations of statics in the linear elasticity. This solution, without derivation, was
published by B.G. Galerkin in 1930 in Doklady AN SSSR. Earlier B.G. Galerkin made
a presentation on this subject at the Meeting of Leningradian Mechanical Society. Dur-
ing the presentation he only wrote the formulae of the solution on the blackboard and
suggested to the colleagues to check that the formulae are the solution of equations of
statics and allow to satisfy arbitrary boundary conditions. For the first time, A.I. Lurie
gave in his paper the complete derivation of Galerkin’s solution. In the same paper, he
obtains by this method the solution of Lamé dynamic equations, which gives Galerkin’s
solution as a particular case. In the monograph “Operational calculus” one can find a
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lot of solved problems which are of independent significance and pronounced technical
trend. Owing to the fact, the monograph became a manual for engineers engaged in
different organizations related to calculations. The same destiny waited for majority of
another works by A.I. Lurie.

In conclusion, we note one more work by A.I. Lurie. Towards the end of the thir-
ties, at Leningradskii Metallicheskii Zavod (Leningrad Metal Plant), in the course on
construction of powerful vapor turbines, a phenomenon, new for that time, namely, self-
excitation of severe vibrations in high-pressure pipelines, was discovered. Later, the
phenomenon was named as the hydrodynamical shock. The vibration occurred to be so
active that the walls of a huge workshop stated to shake. A.I. Lurie was involved into
solving of problem. He constructed a mathematical model and made the calculations
with in collaboration with his coworker A.I. Chekmarev. The observed phenomenon of
self-excitation of vibrations in a pipeline was completely borne out by the above calcu-
lations. This seemed to be the first solution of a problem of such type. Far later, similar
calculations were performed by A.I. Lurie’s students and colleagues, namely, V.A. Pal-
mov, A.A. Pervozvansky, V.A. Pupyrev under the guidance of A.I. Lurie for pipelines
of another types. For the solution of the problem, the operational calculus was used
as well. Difficulty arose with formulation of the criteria of stability. Usual criteria (of
Gurvitz, Mikhailov type etc.) were not applicable, since critical values had to be found
from the transcendental equation. This problem is not solved yet for the time being for
the general case. However, the numerical calculations were completely performed.

4 Analytical mechanics

It was mentioned that just after graduating from the institute A.I. Lurie began to teach
theoretical mechanics. At that time a well-known scientist I.V. Mescherskiy hold the
Chair of Theoretical Mechanics, who, in addition, was the author of the unique prob-
lem book on theoretical mechanics, which, up to date, had gone into 38 editions and
it had been translated into many foreign languages. By the way, just I.V. Mescherski
pioneered in the introduction of the exercises as a form of education. One should take
into account, that at that time in the world there was no such a subject “theoretical
mechanics” as an element in the technical education. There existed the subject “ana-
lytical mechanics”, which was studied at the mathematical faculties of the universities.
One can mention famous monographs “Analytical dynamics” by E.T. Whittaker and
“Theoretical mechanics” by P. Appel. There were also some other textbooks, but they
were not translated into Russian. In 1922 in Russia the lithographic lecture notes on
the analytical mechanics by N.V. Roze, a Professor of Leningrad State University, were
published. All these monographs were not very appropriate for teaching in technical in-
stitutes, from which practical engineers were graduating. Thus there was a vital necessity
in such a textbook on theoretical mechanics for technical institutes, a textbook, which
could present in an understandable way all the achievements of the theory together with
its practical applications. At the time being, when the development of the fundamental
mechanics in Russia is on the very high leveln the West, one can hardly imagine all
the hugeness of the task confronting the Russian technical education at that time. The
slogan “to overtake and surpass!” was not even put on agenda there, and “to overtake!”
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slogan seemed to be a far remote dream. A.I. Lurie, being a highly educated person,
realized perfectly all this. The scientist not only realized the situation, but also he made
every effort to change it. As a result, in 1932–1933 there was published a monograph in
three volumes: L.G. Loytsianski, A.I. Lurie “Theoretical mechanics”. The first and the
second volumes contained the material required for technical education of an engineer,
and the third volume contained more sophisticated methods of the analytical mechanics
with applications to the large amount of specific problems. Later on, the contents of the
first two volumes was accepted as the compulsory program for the technical institutes.
All next editions of this text-book did not include the third volume. The sixth (and the
last) edition of the monograph had been published in 1983, after the death of A.I. Lurie.
This monograph was novel in many relations. Firstly, contrary to its western analogues,
it paid a lot of attention to the technical applications. Accordingly, certain theoretical
problems of the analytical mechanics, which might “frighten” practical engineers, were
omitted. On the contrary, applied aspects were far more extended. Wide applicability
of vectorial calculus, nearly unused at that time, gave the additional clarity to the book.
A small book by L. Silberstein (“Vectorial mechanics”. London: McMillan & Co., 1913)
was the only book on mechanics of that time using vectorial calculus. However, the book
by Silberstein was absolutely unuseful for the purposes of the technical education, and,
apart from that, it used the terminology, which had not been accepted later on. The
textbook by L.G. Loytsiansky and A.I. Lurie played a great role in education of Russian
engineers. By the way, the theoretical mechanics was one of compulsory courses, not less
than of 230 hours, in all technical institutes of Russia. This was one of main reasons
of the high educational level of Russian engineers. Regrettably, beginning from the late
sixties, the volume of courses on mechanics in many technical institutes has decreased
steadily, and this led to the declining of the level of the graduate mechanical engineers.
Since the technical education made the foundation for entire higher education in Russia,
declining in the professional level of engineers led to the diminution of the IQ of the Rus-
sian population as a whole. We compare not more than two numbers characterizing the
IQ of the Russian population, namely, in 1960 Russia took the second place among all
the world countries with respect to this quality, whereas in 1995 our country was merely
at 54th place. Of course, reduction of a role of mechanics in the technical education is
not the only reason for such poor situation, but this is one of the main problems. It
is out of line here to go to the detailed discussion of such a burning (and not only for
Russia) question, however, this is a indisputable fact.

Now, we turn to the description of the creative work of A.I. Lurie. After the publica-
tion of the textbook on theoretical mechanics, the scientist’s research interests had been
concentrated in another fields of mechanics (to be discussed further), for the period of
almost 20 years. This statement is not completely true, because during all these years
A.I. Lurie gave courses in various areas of mechanics, including the course on analyti-
cal mechanics for students of the Faculty of Physics and Mechanics, and, naturally, the
scientist continued to cogitate on the analytical mechanics problems. However, his publi-
cations of those years were devoted to other problems. At the beginning of the fifties, due
to necessities in computation of motion of artificial satellites and solution of some other
problems, for instance, in developing the gyroscopic systems, A.I. Lurie interests, again,
turned to the analytical mechanics. As a result, in 1961, the fundamental monograph
“Analytical Mechanics” was published. It should be noticed that Russia already scored
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big successes in the field of education at that time. Development of the fundamental me-
chanics in Russia gained the level of leading countries of the West. As for certain fields in
mechanics, for instance, the theory of gyroscopic systems, Russia had taken the leading
position. The monograph “Analytical mechanics” to the full extent supports the said
above. In the monograph not only all the basic methods of analytical mechanics were
presented, but their essential development was made. The monograph, as a whole, held
the peculiar features of A.I. Lurie’s creative scientific work, such as clarity and laconism
in the presentation of a subject along with a high theoretical level and pronounced trend
to the applied science. Very few scientists succeeded in performing the synthesis of such
a kind. Everyone who encounters a need to solve any problem in the field of dynamics
of systems with the finite number degrees of freedom, might be advised to look through,
first of all, “Analytical mechanics” of A.I. Lurie. This is very probable that the reader
will find the problem needed or something very much alike in this monograph. In many
respects the monograph can be named as an encyclopaedia or a reference book. However,
in comparison with encyclopaedia or a reference book, all the problems are discussed bas-
ing on the same foundation, along with the thorough treatment of all the details there.
Of course, this leads to the apparition of new elements in many of these problems. This
would take a lot of efforts to describe all these new elements, but no doubt that the reader
will discover them easily himself. To illustrate this, we shall mention the description of
the relative motion, and make an emphasis on the kinematics of rigid bodies, embed-
ded by rotors (gyroscopes). Below we restrict our description to short references for a
few those new elements1, which are of theoretical significance, i.e. just they make their
contribution to the bases of analytical mechanics. Here, first of all, one must mention
the description of rotation of a rigid body by means of the vector of finite rotation. The
vector, as such, was known long ago. Nevertheless, even in modern textbooks on physics
and in some contemporary papers in the field of mechanics the possibility to describe the
rotation by means of vector is denied. This fact is caused by the erroneous application
of the concept of the superposition of rotations. A detailed mathematical apparatus for
effective using of the finite rotation vector is developed in “Analytical mechanics”. In
particular, the theorem is derived which gives the expression for the finite rotation vector
corresponding to the superposition of rotations via finite rotation vectors for the com-
posing rotations. The rule of inversion for the finite rotation vectors is established. The
formula giving the relation between the angular velocity vector and the time derivative
of the finite rotation vector. The Darboux problem, i.e. the problem for determination
of rotations by given vector of angular velocity, is formulated in terms of the finite rota-
tion vector. The formulae giving the relation between the finite rotation vector and the
Rodrigo–Hamilton and Cayley–Klein parameters, are established. The significance of the
above results is concerned with the fact that they can not become outdated, i.e. once and
forever, they have gone into mechanics. One more fundamental result is the following.
By the end of the nineteenth century, Rayleigh introduced the concept of the dissipative
function as the quadratical form of velocities. This disspative function was very useful in
the analysis of nonconservative systems. Regrettably, the Rayleigh dissipative function
was defined only for one class of friction, namely, for the linear viscous friction. In the
monograph “Analytical mechanics” the concept of the dissipative function was general-
ized for an arbitrary dependence of friction forces on the velocity. One can find in the

1This is hardly possible to propose a lot of such new elements in mechanics
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book the examples of the dissipative functions for various friction laws. In particular,
the dissipative function for the Coulomb friction law is constructed. Now, the function
is widely used in problems of dynamics of the systems with Coulomb friction.

5 The theory of thin elastic shells

A great number of A.I. Lurie’s works is devoted to theories of thin rods, plates and shells.
In this section, we concentrate our attention on the theory of shells. The theory of shells
is one of the most actual directions of research in mechanics. This is caused by the fol-
lowing circumstances. Firstly, thin-walled constructions are widely applied in technology
and civil engineering. By the way, the Nature also widely uses thin-walled elements,
e.g. biological membranes, in biological systems. Secondly, in the theory of shells the
general mechanics, generalized in comparison to the Newtonian mechanics, is developed
in the explicit way. A.I. Lurie actively worked on the theory of shells during more than
25 years. His first paper in this field “The investigations on the theory of elastic shells”
(Trudy Leningradskogo Industrialnogo Instituta — Transactions of Leningrad Industrial
Institute, 1937, No. 6, pp. 37–52) had issued in 1937, and the last one “On the statical
geometrical analogy of the theory of shells” was published in 1961. As a whole, A.I. Lurie
had published five extensive papers and one monograph. The monograph, “Statics of the
thin elastic shells” (Gostekhizdat, 1947, 252 p., in Russian), played an important role
of a reliable scientific basis for practical calculations. It was the first monograph by a
Russian author specialized in the theory of shells. One should mention that the theory
of shells was one of the first2 areas in mechanics of solids, where, as long ago in 1940,
the post-revolutionary Russia not only had achieved the level of well-developed western
countries, but even left them behind. The role of A.I. Lurie in this success can not be
overemphasized, though, undoubtely, achievements of other Russian scientists, among
whom A.L. Goldenweizer and V.V. Novozhilov must be mentioned, are very significant.
In the first cited above work A.I. Lurie writes: “As compared to the that, hardly un-
derstandable, presentation of the subject given in chapter XXIV of the well-known work
by Love3, we, using the language of the vectorial notation, have simplified essentially all
derivations”. We emphasize that in this work, as well as in all his works, A.I. Lurie ap-
plies the most modern versions of the corresponding mathematical theories. In the above
case it was the geometry of surfaces. In the work under discussion A.I. Lurie proposed a
rigorous theory for infinitesimal deformations of surfaces for enough general case. At the
same time, when deriving the equilibrium equations in displacements, A.I. Lurie applied
a bit modified but nevertheless restricted method proposed by B.G. Galerkin two years
before. In his work “The general theory of elastic thin shells” (PMM, 1940, IV, N 2,
pp. 7–34, in Russian) A.I. Lurie already took off all the restrictions and developed the
complete theory based on Kirchoff–Love hypotheses, in terms of tensor calculus. Even at
present, the theory by A.I. Lurie can not be improved without abandon the Kirchoff–Love
hypotheses. The monograph “Statics of thin elastic shells” is quite characteristic for all
the creative work of the scientist. In all his investigations, he never forgot for whom

2Among other areas where the priority of Russian scientists is unquestionable, one must point out
Kolosov–Muskhelishvili method for a plane elasticity problem.

3August Love. Mathematical theory of elasticity. Moscow, Leningrad: ONTI, 1935
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his works were written. In the case of the mentioned monograph, he beared in mind
numerous groups of engineers engaged in various design and constructor bureau. For
this reason the tensor calculus was not used in the book. The presentation is ultimately
clear and simple, but also rigorous, and is limited to examination of most usable classes
of shells, mainly, by shells with rotational symmetry. In this monograph one can find a
great number of solved problems, with easily used in practice design formulae. This is a
well-known fact that the equations of the theory of shells are cumbersome, and their so-
lutions are awkward and can be hardly used in engineering calculations. Taking this into
account, A.I. Lurie renounced from presentation of exact solutions, which are dubious
to the certain degree because of approximate character of the theory of shells itself, and
he did apply asymptotical methods. As a result, he succeeded to obtain compact and
easy in use formulae for computations. The above mentioned features of the monograph
had made it a manual handbook for calculating engineer just after the publication. One
would mistaken to believe that the monograph in question is of no other than applied
significance. The results presented referred to the most important achievements of the
theory. Actually, the theory of shells was inspired by vital practical necessities. There-
fore, it would be useless to write down cumbrous equations and even more unmanageable
solutions, which appeared often in the beginning of the XX century and were never ap-
plied anywhere. The monograph by A.I. Lurie helped the theory of shells to escape
this sad destiny. The asymptotical formulae obtained in the monograph were a result
of quite rigorous mathematical analysis. One should take into account that the theory
of differential equations with an infinitesimal parameter in the coefficients of the highest
derivatives had not been developed yet. It had appeared ten years later, and it grew up
just from the problems of the theory of shells. Among concrete results discussed in the
monograph, one has to point out the problem on the stress concentration in the vicinity
of a hole at the surface of the cylindrical shell. The classical Kirsch problem on the stress
concentration near the hole in the plane subjected to the extension, is known. The prob-
lem solved by A.I. Lurie is a far generalization of the Kirsch problem. Afterwards, this
problem gave rise to the separate large part of the theory of shells. Without dwelling on
other A.I. Lurie’s results in this field, we note that all the six his works on the theory of
shells became classical and now they are an integral part of the modern theory of shells.

6 Spatial problems of linear and nonlinear elasticity

theories

A.I. Lurie devoted a great number of his scientific works to the spatial problems of the
elasticity theory. We concentrate our attention on three of them, namely:
1. Spatial problems of the theory of elasticity. Gostekhizdat, 1955, 491 p.
2. Theory of elasticity. Nauka, 1970, 939 p.
3. Nonlinear theory of elasticity. Nauka, 1980, 512 p.

All the three monographs are related to one and the same area of mechanics. Meanwhile,
they are not intercrossed with respect to contents. The first book concerns rigorous
solutions for problems on statics of elastic bodies. The attention is mainly focused on
analysis of problems for an elastic layer. Just in this monograph A.I. Lurie proposed a
new method, which became a widely known as a Lurie symbolic method. This approach is
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a far extended generalization of operational methods, but it has also essential differences.
Let us demonstrate the idea of this method using as an example the problem for an elastic
layer. We put down the Lamé static equation for a layer |z| � h:

∇ · ∇u(x, y, z) +
1

1 − 2ν
∇∇ · u(x, y, z) = 0, |z| < h, x, y ∈ Ω, (1)

where u is the displacement vector, and the body forces are omitted for simplicity. The
nabla operator can be represented as follows

∇ = k
d

dz
+ Λ, Λ = i

d

dx
+ j

d

dy
, k · Λ = 0. (2)

Substituting equation (2) into equation (1), we rewrite the last one as

d2

dz2

(
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1
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kk
)
· u +

1

1 − 2ν
(kΛ + Λk) · du

dz
+

+ Λ · Λu +
1

1 − 2ν
Λ Λ · u = 0. (3)

If we consider operator Λ in this equation as a vector, which does not depend on the
variable z, then equation (3) is an ordinary differential equation with constant coefficients.
Let us add “initial” conditions to equation (3)

z = 0 : u = f(x, y),
du
dz

= g(x, y). (4)

Thus we obtain the initial value problem (3)–(4), where variables x, y are considered as
parameters. Particular solutions of the problem are sought in the form of

u = exp(iλz) a(x, y). (5)

Substituting representation (5) into equation (3) we obtain a homogeneous set of equa-
tions for a vector a[

− λ2
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kk
)

+
iλ

1 − 2ν
(kΛ + Λk) + Λ · ΛE +

1

1 − 2ν
ΛΛ

]
· a = 0. (6)

Let tensor A be the expression within square brackets in this equation. Nontrivial
solutions for equation (6) exist if the determinant of tensor A equals 0. By evaluating
the determinant we derive an equation to determine the characteristic values λ:

detA =
2(1 − 2ν)

1 − 2ν

(
λ2 − D2

)3
= 0, where D2 = Λ · Λ =

∂2

∂x2
+

∂2

∂y2
. (7)

This equation has two roots λ = ±D, each of the multiplicity 3. Having done simple
calculations we obtain the following representation for a solution of the initial value
problem:

u = P(z, zD) · f(x, y) + Q(z, zD) · g(x, y). (8)
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Tensors P and Q are to be considered as differential operators of the infinite order. They
are analytical functions of operators D2, D sin zD, cos zD. To write down the explicit
form for tensors P,Q we have to represent them in terms of series that include only
integer powers of operator D2, which is the two-dimensional Laplacian. Now, we have
to derive the equations to determine functions f ,g. We do this using the boundary
conditions at z = ±h. Finally, we obtain two vector equations with two-dimensional
differential operators of the infinite order. Note that series for these operators converge
very fastly. Therefore, usually it is possible to take into account only a few terms of the
series. For instance, if we take into account only the principal term, we obtain equations
of the classical Kirchoff theory of plates. The next approximation gives us the theory
of plates taking into account a transverse displacement deformation. We shall not go
into additional details here. However, we emphasize that the symbolic method described
above has an absolutely rigorous mathematical proof. This is easy to generalize the
method for the dynamical case, and it had been performed. The symbolic method of
A.I. Lurie has had wide applications in the theory of thick plates, and it was used by
many authors. The method turned to be the most effective in combination with the
technique of homogeneous solutions, to which A.I. Lurie made a significant contribution
as well.

The monograph “Theory of elasticity”, near 650 pages, is beyond competition as for
its fundamental nature and the scope of printed matter on the static problems of the
elasticity. The dynamic problems and waves in elastic media are not considered in the
book. The reason is not only the wish ot avoid the inevitable excessive increasement of
the book size, but chiefly the fact that dynamic problems essentially differ from static
ones by their physical and mathematical nature, and an inclusion of them into the work
would destroy the integrity of description. It should be clearly realized that at the end of
sixties, Russia held a far higher level relative to Science in comparison with 1925. There
existed already a lot of exhaustive text-books for all areas of mechanics and scientific
monographs being sometimes superior by their level to foreign analogues. The life had
changed, and, in particular, the theoretical level of engineers had been essentially raised.
A new kind of engineers, so called “engineers–researchers”, had appeared. Their practical
results were accompanied by rather deep theoretical investigations. The whole of the
above-mentioned was taken into account by A.I. Lurie when he started to work on the
monograph “Theory of elasticity”. The problem was to give the exhaustive treatment
of the subject, including the most important achievements of XIX–XX centuries in this
field, basing on the same foundation. Naturally, the solution of this problem required the
treatment of classical results in modern science language. In other words, there was a need
for a thorough revision of printed matter in a huge quantity. In addition, the approaches
to derivation of classical results, of course, were changed, in some cases essentially. At
present, we can state that the monograph “Theory of elasticity” is in complete accordance
to its designation. If anybody intends to gain the high class theoretical training in
static problems of the elasticity theory, then the studying of “Theory of elasticity” is
the shortest, although not too much easy, way to the aim. This is, no doubt, true
with respect to the linear theory of elasticity. As for the section devoted to the nonlinear
problems of the theory of elasticity, A.I. Lurie himself was not fully satisfied with the work
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performed4. A.I. Lurie’s dissatisfaction with the treatment of the nonlinear problems in
“Theory of elasticity” is easily explained. As it is known, the central problem in the
nonlinear theory of elasticity is the formulation of the constitutive equations. In the
linear theory of elasticity the constitutive equation is reduced, according to Cauchy’s
suggestion, to the general linear relation between the stress tensor and the strain tensor.
In this case, the existence of the elastic potential is guaranteed. The only question arises
when the restriction is imposed for the elastic potential to be positively defined. For an
isotropic material the above restriction is reduced to the following inequalities:

µ > 0, 3λ + 2µ > 0, (9)

where λ and µ are the Lamé constants. Are the restrictions (9) are necessary? The
general laws of thermodynamics do not require these conditions to be true. They are
not necessary from the formal mathematical point of view either. Indeed, the uniqueness
and the existence of the solution for the equations of the nonlinear theory of elasticity is
provided by the conditions of the strong ellipticity in statics or, which is just the same,
by the conditions of the strong hyperbolicity in dynamics. The conditions lead to the
necessity to fulfil the inequalities

µ > 0, λ + 2µ > 0, (10)

which are more weak than the conditions (10). In the linear theory of elasticity the
choice between inequalities (9) and (10) is made on the basis of the following physical
principle: for any kind of the deformation of material from its natural state its internal
energy, or, which is the same, its elastic potential must increase. The formulated principle
was accepted in the mechanics of the elastic bodies as the stability concept. One can
easily check that the material, which satisfies to the inequalities (10) with loss of the
inequalities (9), can not exist continuously and it breaks spontaneously under action of
arbitrary small loads. In the nonlinear theory of elasticity the situation is incomparably
more complicated. Firstly, the elastic potential exists not for any relation between the
stress tensor and the finite strain tensor. Therefore, it became necessary to distinguish
the elastic and hyperelastic5 materials. Secondly, the uniqueness of the solution of the
static problem in the theory of elasticity is not only absent, but it must be absent.
Thirdly, for the finite deformation the elastic potential does not necessarily increase along
with the growth of deformation etc. In short, it is clear that the elastic potential could
not be set in an arbitrary way and, at the same time, nobody knows what restrictions
and why should be imposed on the elastic potential. As C. Truesdell proposed, this
situation was named as a main unsolved problem of the theory of elasticity. By the
time of publication of the monograph “Theory of elasticity”, the problem mentioned
above started to acquire the peculiar urgency. A new division of the nonlinear theory of
elasticity started to form, which was named as “supplementary inequalities in the theory
of elasticity”. Within seventies, a variety of such inequalities was proposed, and the
investigation of the consequences of violation of these inequalities started. For instance,

4By the way, many people told to the author of this communication that at the first acquaintance
with the nonlinear theory of elasticity, they like far more the treatment of the theory in “Theory of
elasticity” as compared to the much more extended monograph “Nonlinear theory of elasticity”.

5The elastic potential exists for the latter in contrast to the former.
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the problems where the condition of strong ellipticity is broken, became known as the
singular problems in continuum mechanics. Certainly, A.I. Lurie could not stay aside
of the questions discussed so intensively. However, in “Theory of elasticity” all these
problems were not, and could not be elucidated. That is why, all at once, after the
publication of “Theory of elasticity”, A.I. Lurie began to work on the new monograph
“Nonlinear theory of elasticity”, which was published in six months after the author’s
decease. The process of the working on the book was rather long, since it was needed not
only to prepare the material for publication, but also to carry out an enormous research
work at the fore and wide front of continuum mechanics. As always, A.I. Lurie had
studied in detail all the latest advances of foreign scientists. For instance, he treated the
reprint (1968) of lecture notes of C. Truesdell and recommended them for translation into
Russian. This translation, named as “First Course in Rational Continuum Mechanics”,
edited by A.I. Lurie, was published in 1975. In the course of translation A.I. Lurie was
in active correspondence with C. Truesdell, who, as a result, made a lot of corrections
and improvements to the initial text. Owing to this, the Russian translation of the book
noticeably differed from the original. To the work on the problems described, A.I. Lurie
drew his student E.L. Gurvich, with whom they published a joint paper “On the theory
of wave propagation in the nonlinear elastic medium (an effective verification of the
Adamar condition)”, Izvestia AN SSSR, MTT, 1980, N6, pp. 110–116. The paper was
of a great importance in the theoretical sense. Unfortunately, A.I. Lurie was not fated
to look through the paper in the published version. As we see, up to the end of his life,
despite of the disease, which took a bad course after 1976, A.I. Lurie did not cease an
active scientific work. The process of creation of the monograph “Nonlinear theory of
elasticity” can not be treated as anything but the heroic scientific deed. It should be
mentioned that the whole book, from the first to the last line, was written with the hand
of A.I. Lurie. Nevertheless, only a very thoughtful reader could discover in it the signs of
the severe illness, as traces of a certain hurry. A.I. Lurie clearly realized that his days are
numbered, and he feared not be able to complete the ten-year work, which was of great
importance for him. In considering the book as a whole, as all monographs by A.I. Lurie,
it contains a thorough treatment of the subject in terms of direct tensor calculus, which
essentially facilitates the perception of the material outlined. All presently used measures
of deformation and stress tensors are introduced consequently. Contrary to the linear
theory, one can introduce various stress and strain tensors in the nonlinear theory, and
they must be distinguished rigorously. Naturally, the main attention is paid to the theory
of constitutive equations and to the formulation of restrictions for these equations, and, in
particular, the restrictions for setting the elastic potential. The problems for compressible
and incompressible materials are considered in detail. Note that a rubber is an important
example of an incompressible nonlinear elastic material. The variational principles of the
nonlinear theory of elasticity are formulated in the monograph. In particular, one can
find there the principle of complementary work, proved by L.M. Zubov, the student of
A.I. Lurie. This principle initiated a spirited discussion in the foreign literature. A
notable attention is given to such an important area of the nonlinear theory of elasticity,
as a superposition of small and finite deformations. The importance of these problems
is caused by the fact that in continuum mechanics, contrary to mechanics of systems
with a finite number of degrees of freedom, the only way to examine the stability of the
system is to consider a superposition of small and finite deformations. The great practical
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importance of stability problems is undoubtful. The monograph “Theory of nonlinear
elasticity” by A.I. Lurie is closed with the statement of basic facts of thermodynamics
for the nonlinear elastic medium.

7 Conclusion

Even from the above and rather brief review of A.I. Lurie’s works on mechanics of solids
and analytical mechanics, one can see how enormous his contribution into evolution
of mechanics is. Moreover, the works of A.I. Lurie on the theory of control, where
he obtained some world-famed results, are not discussed in this review. As for the
contribution made by A.I. Lurie into evolution of mechanics in Russia, we can not pass
over the School created by him, to which hundreds of students working in various fields
of mechanics belong. The students continue the life-work of A.I. Lurie. The author of
the communication had an honour not only to be a student — follower of the Teacher,
but to spend many hours but to spend many hours together with him in a team work at
his writting table. The most striking features of A.I. Lurie were his magnificent personal
qualities, his perfect honesty and scientific uprightness along with kind and responsive
regards for surrounding people. You should have seen how his eyes lit up with sincere
interest and curiosity when discussing new scientific results obtained by someone! At the
same time, he precisely distinguished at once a true new result from the known one but
“got up in new clothes”.

The name of A.I. Lurie has gone down in the history of Russian mechanics for ever.
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Phase Transitions and General Theory
of Elasto-Plastic Bodies∗

Abstract

The paper deals with a new theory of elastoplastic bodies based on a description of inelas-
tic properties by means of the phase transitions in the material. The medium is assumed to be
micropolar. The theory is applicable to the materials in any phase states. Besides, the theory
takes into account the dry friction between the particles of the medium.

1 Introduction

A behavior of solid structures under an external loading has been studied during several centuries.
However intensive and task-oriented investigations had begun in XIX century and are carried out
till the present time. All known materials can be separated on two different classes: elastic
materials and all others. In general, the fundamentals of the nonlinear theory of elasticity may
be considered as completely developed [1]. For inelastic materials the situation is quite different.
There exists a huge massive of experimental data. This data is widely used for practical purposes
and normative documents for the engineering projects, but as a rule this data is not used in
theoretical investigations. A lot of established experimental facts cannot be described by the
existing theories of the elastoplastic bodies till now. Let us point out some of them [2]: 1. Under
sufficiently high pressure all materials experience irreversible strains (Bridgman), which can be
considered as phase transitions. The rate of these transitions is determined by the properties of
the material and do not depend on the rate of change of the external loads. 2. At sufficiently high
pressure all rigid bodies flow similarly to a fluid (Tresca, Bridgman). For example, the classical
experiment by H. Tresca on extrude of lead shows absence of the stagnant zones in the material.
On contrary, from any existing theory of plasticity it follows that the bands of the “dead” material
should be present [3]. Thus we see a serious qualitative discrepancy between the theory and
experiment. 3. The experiments on large inelastic deformation show essential influence of the
size effect [4]. 4. In all experiments with a smooth loading the Savart – Masson effect is exhibited
clearly. 5. Experiments with bulk materials show the necessity of taking into account the dry
friction between particles of the medium. All these facts are of great importance because they
are observed practically in all experiments. Nevertheless, the existing theories of plasticity are

∗Zhilin P.A. Phase Transitions and General Theory of Elasto-Plastic Bodies // Proceedings of XXIX Summer School
– Conference “Advanced Problems in Mechanics”, St. Petersburg, Russia, 2002. P. 36–48.
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not able to explain these facts. Moreover, the most of the known theories of plasticity are based
on the yield criterions either by Saint-Venant – Tresca or by Mises. Both criterions were never
strictly confirmed by experiments. While the existing theories cover almost all practical needs
and extremely useful, nevertheless they are not able to explain some features of the material
behavior.

The aim of the presentation is the attempt of build-up of such theory of inelastic materials,
which would qualitatively feature the basic experimental facts. Besides, the theory should be
sufficiently strict from the mathematical point of view. A novelty of the offered theory consists
in the following. The experiments show that the inelastic materials cannot be modelled within
framework of the material (Lagrangian) description. However the most of the known theories of
the elastoplastic bodies are based on the material description. In what follows the spatial (Eule-
rian) description is used. The medium is assumed to be micropolar. Kinematics of the medium
with rotational degrees of freedom is described. The fundamental laws are stated for open sys-
tems in a general form. The equation of the energy balance contains the term, which describes
the formation of new particles or fragmentation of the initial particles. The concepts of internal
energy, temperature and entropy are introduced by means of the pure mechanical arguments. The
dry friction between the particles of the medium is introduced through the antisymmetric part of
the stress tensor. The free energy is set in the form, which is suitable simultaneously for gases,
fluids and solids. It is important to note that the material under the consideration has a finite
tensile strength. That means that the constitutive equations can violate to the conditions of the
strong ellipticity.

2 Fundamental Laws

2.1 Kinematic relations.

Let us consider a set of particles which are moving with respect to an inertial system. The set is
not assumed to be a continuum. That means that the concept of a smooth differentiable manyfold
cannot be used. Because of this a pure spatial (Eulerian) description will be used. Let a vector
V(x, t) be the velocity of a particle which at the actual instant of time t occupies the point x of
a reference system. Let a quantity K(x, t) be some property of the particle. In order to find the
change of K(x, t) during a motion of a particle we have to apply the material derivative [5]

δK(x, t)

δt
≡ dK(x, t)

dt
+

(
V(x, t) −

dx
dt

)
· ∇K(x, t).

If the point x is moving with respect to the inertial reference system, then this definition does not
coincide with conventional one and does not contradict with the Galilei principle of relativity. It
is important to note that all used operators must be defined in the reference system rather than
on smooth manyfold as at the material description. Besides let us point out that in the definition
of a material derivative only the derivative V · ∇ along the trajectory of a particle is used. Thus
the continuity of K(x, t) with respect to the space variable x is not assumed. For a vector of the
particle acceleration we have

W(x, t) =
d

dt
V(x, t) +

(
V(x, t) −

dx
dt

)
· ∇V(x, t).
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Let us introduce the displacement vector

δu(x, t)

δt
= V(x, t) ⇒ du

dt
= V · g, (1)

where
g(x, t) ≡ (E − ∇u(x, t)) , det g(x, t) > 0. (2)

The tensor g(x, t) will be termed the first measure of deformation. The Eq.(1) is a definition of
the displacement vector. From (1) it follows

∇V(x, t) = −
δg(x, t)

δt
· g−1(x, t). (3)

Eqs.(1)–(3) may be found in [6] and will be used in the reduced equation of the energy balance.
If a tensor P(x, t) determines the rotation of a particle, then the angular velocity of the particle is
defined by the modified Poisson equation [5]

δP(x, t)

δt
= ω(x, t) × P(x, t). (4)

Let us introduce the second measure of deformation F by means of equalities

∂

∂xs
P = Fs × P, F = gs ⊗ Fs, (5)

where the vectors gs are the basis vectors and the following conditions of integrability hold [5]

∂Fs

∂xm
−

∂Fm

∂xs
= Fm × Fs. (6)

From Eq.(6) it follows

∇ ⊗ ω =
δF
δt

+ F × ω + ∇V · F.

2.2 Particles and mass balance.

Let us introduce two nonnegative functions: η(x, t) is the particle density and ρ(x, t) is the mass
density. If the material has a tendency to a fragmentation, then the total mass is conserved, but
the number of particles does not conserved. In such a case the following equations are valid

δη

δt
+ η∇ · V = χ,

δρ

δt
+ ρ∇ · V = 0, (7)

where χ(x, t) determines the production of new particles for the unit of time. From practical
point of view the importance of η(x, t) is determined by the necessity to take into account the
porosity of material. In such a case the function χ(x, t) in Eqs.(7) depends on pressure. Using
the identity [5]

∇ · V(x,t) = −
1

I3(g)

δI3(g)

δt
, I3(g) ≡ det g
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the above equations can be written in the form

δ

δt

[
η

I3(g)

]
=

χ

I3
,

δ

δt

[
ρ

I3(g)

]
= 0. (8)

Let us introduce a some characteristic of a particle called the particle volume vp. The quantity
c = vpη, known as the compactness, determines the material volume vpηdV occupied by the
material in the control volume dV . The quantity cp = 1 − vpη is termed a porosity. Note that
we apply the term “porosity” in unconventional sense because we do not consider the porous
medium. We mean that any solid material has a several stable states corresponding to different
magnitudes of the compactness. The transition of the material from one stable state to another
stable state is a typical phase transition which we would like to take into account. For all known
materials compactness satisfies an inequality 0 ≤ vpη ≤ 0.74. Thus for porosity we have
0.26 ≤ cp ≤ 1. The first equation from Eqs.(7) may be rewritten in terms of porosity

δcp

δt
+ vpχ(cp, p) = ∇ · V, (9)

where p is a pressure and the function vpχ(cp, p) must be defined by the constitutive equation,
for which there exist a many different possibilities, but the final results are not known. Because
of this we are not able to give a short resume of these possibilities. As an example the following
equation may be considered

dcp

dt
+ V · ∇cp = ∇ · V −

ε2p

ε2 + (pc − p)2
,

where ε2 
 1 is a small parameter and pc is some critical pressure. This equation shows the
behavior of the porosity near one point of the phase transitions. The realistic equations should
have a more complicated form.

2.3 Dynamics Laws.

Let us introduce the stress tensor T(x, t) and the moment stress tensor M(x, t). These tensors
are defined in the space, but not in the material. For them the Cauchy formulae are valid

T(n) = n · T, M(n) = n · M.

The first and the second laws by Euler have the well known form

∇ · T + ρF = ρ
δV(x, t)

δt
, (10)

∇·M + T× + ρL = ρ
δ(J · ω)

δt
, (11)

where the mass density of the inertia tensor J of a particle in the actual position is connected with
the constant tensor J0 in the reference position by

J(x, t) = P(x, t) · J0 · PT (x, t). (12)
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2.4 Equation of the energy balance.

The equation of the energy balance in the local form can be written down as

ρ
δU

δt
= TT · · (∇V + E × ω) + MT · ·∇ ω + ∇· h + ρq. (13)

where U is the mass density of internal energy and the vector h is the vector of the heat flux. The
right hand side of Eq.(13) contain the power of the stress tensor and of the moment stress tensor.
One part of the power changes the specific internal energy. Another part partly remains in the
body as a heat and partly radiates into the external medium. In order to separate these parts the
stress tensor and the moment stress tensor must be represented as

T = Te + Ti, M = Me + Mi, (14)

where the quantities with the subscript “e” are independent of velocities and the quantities with
the subscript “i” are the rest part of stresses. One may substitute Eq.(14) into Eq.(13) in order
to get the final form of the energy balance equation. However in such a form the energy balance
equation is almost useless. We have to transform this equation in order to obtain the reduced
equation of the energy balance.

The forth fundamental law of mechanics is the second law of thermodynamics. The statement
of this law will be given in the following section.

3 The heat conductivity equation

Let us introduce the concepts of the temperature, entropy and chemical potential by means of the
following equation

ρϑ
δH

δt
+ ρη

δC

δt
= ∇ · h + ρq + TT

i · · (∇V + E × ω) + MT
i · ·∇ω, (15)

where the functions ϑ(x, t), H(x, t) and C(x, t) are respectively termed the temperature, the
specific entropy and the specific chemical potential. Let us underline that Eq.(15) is the definition
for these functions. The only purpose of introduction of the specific entropy and the specific
chemical potential (these functions by itself have no physical sense) is to define by an appropriate
way the temperature ϑ and the particle density η or, what is the same, porosity of the material.
Of course, we need some additional assumptions for a complete definition of those quantities.
Now let us accept the second law of thermodynamics in the form of the following inequalities

TT
i · · (∇V + E × ω) + MT

i · ·∇ω ≥ 0, h · ∇ϑ ≥ 0. (16)

Inequalities (16) are more strong than the consequences of the known inequality by Clausius –
Duhem [7]. However from our point of view Eq.(16) are quite good for practical aims. The
constitutive equation for the vector of the heat flux may be taken in the simplest form

h = − κ ∇ϑ, κ ≥ 0. (17)

The substituting of Eq.(17) into Eq.(15) leads to the heat conduction equation.
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4 Reduced equation of the energy balance, the Cauchy –
Green relations

Let us introduce the specific free energy

F = U − ϑH − ηC. (18)

Making use Eqs.(14), (15) and (18) the equation (13) can be rewritten in the following form

ρ
δF

δt
+ ρH

δϑ

δt
+ ρC

δη

δt
= MT

e · · δF
δt

−
(
g−1 · TT

e + g−1 · F · MT
e

) · ·δg
δt

+

+
1

2

[(
MT

e · F − Te

)
× × P

]T
· ·δP

δt
. (19)

The equation of the energy balance written in the form like Eq.(19) is termed the reduced equa-
tion of the energy balance. This equation involves only the intrinsic variables. From Eq.(19) we
see that the free energy is a function of the following arguments

F = F (ϑ, η, g, F, P) . (20)

Taking into account this statement it is readily to derive the Cauchy–Green relations

H = −
∂F

∂ϑ
, C = −

∂F

∂η
, Me = ρ

∂F

∂F
, Te = −ρ

∂F

∂F
· FT − ρ

∂F

∂g
· gT . (21)

Now Eq.(20) takes the form

ρ

(
∂F

∂P

)T

· ·δP
δt

=
1

2

((
MT · F − T

)
× × P

)T

· ·δP
δt

. (22)

Here we have to take into account that the material derivative of the tensor P cannot be changed
by an arbitrarily manner. Indeed, from the Poisson equation Eq.(4) it follows

δP(x, t)

δt
· PT (x, t) = ω(x, t) × E ⇒ (A · P)

T · ·δP(x, t)

δt
= 0, ∀A : A = AT

.

Hence we get the relation

ρ
∂F

∂P
−

1

2

(
MT

e · F − Te

)
× × P = A · P.

In order to exclude the arbitrary symmetric tensor A, we have to multiply both sides of this
equation by the tensor PT and to calculate the vector invariants of both sides. As a result we have[

ρ
∂F

∂P
· PT + MT

e · F − Te

]
· ·C = 0, ∀C : C = −CT . (23)

The stress tensor Te and the moment stress tensor Me are defined by the Cauchy–Green relations
Eqs.(21). That means that the condition Eq.(23) is the restriction superposed on the free energy.
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Below we use the technics given in [8]. From Eq.(23) we see that the free energy must satisfy
the following equation of first order partial differential equation

(
∂F

∂g

)T

· · (C · g) +

(
∂F

∂P

)T

· · (C · P) +

(
∂F

∂F

)T

· · (C · F − F · C) = 0. (24)

The characteristic system for Eq.(24) has a form

dg
ds

= C · g,
dP
ds

= C · P,
dF
ds

= C · F − F · C. (25)

The free energy to satisfy Eq.(24) must be a function of the integrals of Eq.(25). The latter
consists the system of the order 21 and has not more than 18 functionally independent integrals
of Eq.(25).

5 Nonpolar medium with the Coulomb friction

Let us assume that the free energy is independent of the second deformation measure F

F = F (ϑ, η, g) , Me = 0. (26)

We may rewrite Eq.(19) as

ρ
δF

δt
+ ρH

δϑ

δt
+ ρC

δη

δt
= −

(
g−1 · TT

e

) · ·δg
δt

.

The stress tensor can be decomposed as

Te = −p E + τ, τ = τT , tr τ = 0.

The representations for Ti and Mi will be given below. Making use the technics given in the
previous section one can prove that in case under consideration the free energy has a form

F = F (ϑ, η, ρ, γ, G) ,

where
γ ≡ I23(g), G ≡ I−2/3

3 gT · g, detG = 1.

Following [6] the unimodular tensor G will be termed the strain of shape change. The constitutive
equations for the pressure p and for the deviator τ take a form

p = ρ2 ∂F

∂ρ
+ ρI3(g)

∂F

∂I3(g)
, τ = −2ρ

[
γ−1/3g · ∂F

∂G
· gT −

1

3
G · · ∂F

∂G
E
]

.

Let us introduce the new parameters

ζ =
1√

ρI3(g)
, z =

√
ρ

I3(g)
,

δz

δt
= 0.
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In such a case we have the final form of constitutive equations

H = −
∂F

∂ϑ
, C = −

∂F

∂η
, p = −

∂zF

∂ζ
, −

ζτ

2
= γ−1/3g · ∂zF

∂G
· gT −

1

3
G · ·∂zF

∂G
E, (27)

where the free energy is a function of five arguments

F = F(ϑ, η, ζ, z, G). (28)

Now let us assume the following representations for the viscous stresses

Ti = t × E, Mi = m × E. (29)

With these assumptions the first inequality from Eq.(16) takes the form

−t · (2ω − ∇ × V) − m · (∇ × ω) > 0.

For the moment vector m we take the viscous friction law and for the stress vector t we assume
that the Coulomb dry friction law is valid

t = −k h(n · Te · n) |n · Te · n|
(2ω − ∇ × V)

|2ω − ∇ × V|
, m = −µm (∇ × ω) , µm ≥ 0, (30)

where the function h(n · Te · n) is determined by

h(n · Te · n) =

{
1, n · Te · n < 0,

0, n · Te · n ≥ 0,

k ≥ 0 is the coefficient of the dry friction. The unit vector n in Eq.(30) must be found as a
solution of the problem

n · Te · m = max, ∀n, m : |n| = |m| = 1, n · m = 0.

It is easy to prove that the solution of this problem is unique. The Coulomb law in Eq.(30) is
applicable if a sliding is present. Otherwise we have a condition

2ω = ∇ × V, (31)

and the vector t has to be found from Eq.(11)

−µm∇ × [∇ × (∇ × V)] − 4t = ρ
δ

δt
[J · (∇ × V)] . (32)

Using Eq.(32) the vector t can be eliminated from the first law of dynamics.

6 Isotropic materials

Let us suppose that we deal with isotropic materials. In such a case the free energy depends on
the invariants of the tensor G

F = F(ϑ, η, ζ, z, I1, I2), I1(G) ≡ E · ·G, I2(G) ≡ G · ·G. (33)
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Making use of Eq.(33) we can rewrite Eqs.(20) as

H = −
∂F

∂ϑ
, C = −

∂F

∂η
, p = −

∂zF

∂ζ
,

ζ τ =
2

3

(
I1

∂zF

∂I1
+ I2

∂zF

∂I2

)
E − 2

(
∂zF

∂I1
Λ +

∂zF

∂I2
Λ2

)
, (34)

where the tensor Λ is defined by

Λ = I−2/3

3 (g) g · gT .

The invariants of the tensor Λ are given by

I1(G) = I1(Λ) = Λ1 + Λ2 +
1

Λ1Λ2

≥ 3, I2(G) = I2(Λ) = Λ2
1 + Λ2

2 +
1

Λ2
1Λ2

2

≥ 3,

where Λ1, Λ2 are two independent eigenvalues of Λ.

7 Constitutive equation for the pressure

Let us assume that the free energy may be represented as a composition

zF = f(ϑ, η, ζ, z) + zFd(ϑ, η, z, I1, I2).

In such a case the pressure is determined by

p = −
∂f

∂ζ
. (35)

Let the pressure p be a linear function of the temperature

p = f1(ζ, η, z) + f2(ζ, η, z)ϑ. (36)

The most popular in physics of solids the constitutive equations by van-der-Waals and by Mu–
Grüneisen have namely this form. For example, the van-der-Waals equation can be written as

p(ζ, ϑ) = −
a

ζ2
+

c ϑ

ζ − b
, (37)

where a, b and c are the characteristics of the material. However, in our case these quantities may
depend on the parameters η, z. It is known that the van-der-Waals equation satisfactory predicts
the behavior of the real gases. It seems obvious that Eq.(36) can be by corresponding choice of
the functions f1 f2 used not only for liquids and gases but for solids with the phase transitions.
The pressure at ϑ = 0 is described by means of the function f1(ζ, η, z), the possible form of
which is shown in Figure 1. The material shown in Figure 1 has three stable equilibrium states.
The transition from one state to another is a typical phase transition. It is easy to understand that
the diagram, like shown in Figure 1, cannot be found by experiment. However, the envelops of
the true diagram can be established in an experiment. The upper envelope describes the properties
of a material under compression, and the lower envelope describes the properties of the material
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dp

dρ
> 0 ρ0/ρ

p

dp

dρ
< 0

Figure 1: Constitutive equation for the pressure at zero temperature.

under extension. At the qualitative consideration the function f 2(ζ, η, z) may be chosen as in
the van-der-Waals equation. The simplest example of the constitutive equation for the material
with finite tensile strength is given by the expression

p = f0

(
ζ−m − ζ−n

)
+

c ϑ

ζ − b
, (38)

where m > n, ζ > b(η). The pressure dependence on ζ at different temperatures is shown in
Figure 2. Using Eq.(36) and Eq.(38) we find the expression for the free energy

Figure 2: The pressure dependence on ζ4 for different temperatures.

ρ0 F(ζ, ϑ, E) = f0

(
ζ−m+1

m − 1
−

ζ−n+1

n − 1

)
− c ϑ ln (ζ − b) + ψ(ϑ),
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where ψ(ϑ) is some function of temperature. More general form of the constitutive equation for
the pressure is given by

p =

N∑
k=0

akζ−k +
c ϑ

ζ − b
, (39)

where parameters (ak, N, c, b) are characteristics of material. All of them may depend on the
structural parameter η. Besides, maybe it will be useful to take more general form of the function
f2. In general, Eq.(39) corresponds to the material with N solid phase states. If we desire to take
into account the phase transition “solid–liquid” and “liquid–gas”, then we have to construct the
curve like shown in Figure 3. If it is desirable to take into account a several solid phase states,
then we have to add to the constitutive equation the terms like the first term in the right hand side
of Eq.(39).

IIIIIIVV
p

I

Figure 3: The three-phases medium: zones I, III, V correspond to stable gaseous, liquid and solid
phases respectively; zones II, IV correspond the unstable states

8 Constitutive equation for the stress tensor deviator

From conventional point of view the state equation of solid is the relation between pressure,
temperature and the mass density or volume. However the constitutive equation for the deviator
τ of the stress tensor cannot be ignored. Let us underline that the most of the phase transitions in
solid are connected with the fact that the maximal shear stress in material has a rather low upper
limit. When defining the function zFd we have first of all to take into account this fact. Let the
values 0 < λ1 ≤ λ2 ≤ λ3 (λ1λ2λ3 = 1) be eigenvalues of the tensor G. Let us introduce the
quantity

σ ≡ 3I2(G) − I21(G) = (λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2. (40)

If σ = 0, then G = E. Now let us assume that the deviatoric part of free energy zFd depends
on the parameters σ and I1 rather than invariants I1, I2. In such a case from Eqs.(34) one may
obtain the equation

ζτ = −
∂zF

∂I1

(
Λ −

1

3
I1E
)

+ 2
∂zF

∂σ

[(
σ − I21

)
3

E + 2I1Λ − 3Λ2

]
. (41)
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If we consider the case of small deformations when ||(∇u|| 
 1, then instead of Eq.(41) we get

ζτ = 2µ devε + O(ε2), µ ≡ ∂zF

∂I1
, (42)

where ε is the tensor of linear deformations, the parameter µ may be termed the shear modulus.
From Eq.(42) we see that in linear theory the dependence of free energy on a parameter σ is not
important. By this reason and for the sake of simplicity we assume that the free energy does not
depend on the parameter σ and Eq.(41) takes a form

ζτ = 2µ

(
1

3
I1E − Λ

)
, µ ≡ ∂zF

∂I1
. (43)

The shear modulus µ is a function like µ = µ(ϑ, η, z, I1). In order to define the function
µ(ϑ, η, z, I1) we have many possibilities. But at the moment it is difficult to understand by
unique manner what possibility is used by the Nature. The shear modulus depends on four
different parameters ϑ, η, z, I1. For all of them we have governing equations. We thing that the
dependence µ from the temperature is not crucial one. The same may be said with respect to the
variable z. However, the parameters η and I1 have a crucial influence on the shear modulus. The
problem is that from physical point of view both η and I 1 influences on the shear modulus in the
almost similar way. As far as we know in mechanics of solids the parameter η has never been
used and the behavior of the shear modulus is determined by deformations. In such a case it is
possible to use, for example, the following representation

µ = µ0(ϑ, z)

[
1 − cos

(
π(I1 − 3)

2l∗

)]
(44)

where l∗ is a some characteristic of the material. The representation Eq.(44) corresponds to the
free energy which looks just like the potential by Frenkel – Kontorova [4] in dynamics of crystal
lattice. We do not think that this representation is sufficiently good for practical needs. At the
moment we would like to point out the qualitative behavior of the shear modulus. We have to
remember that under high pressure the shear modulus must vanish. The dependence of shear
modulus on I1 is not monotone in order to describe the Savart – Masson effect.
Maybe, more realistic constitutive equation for shear modulus is given by representation like

µ = µ0(ϑ, z, I1)(1 − cp)2(cp − 0.26)2, (45)

where cp is the porosity which must satisfy Eq.(9). Small values of (1 − cp) occur for the
gases. For solids cp is close to 0.26. The quantitative dependence of µ from cp may be, of
course, different from Eq.(45). It is quite possible that we will need some combination of the
representations like Eq.(44) and Eq.(45). The future investigations have to clear the situation.

Conclusion

Above a general (maybe, superfluous general) theory of materials in any phase states is devel-
oped. The present state of the theory does not suit for those people who desire to obtain the
practical results immediately. But what do we know? We know that during more than 150 years
the applied theories of inelastic materials were developed in great extent. And in spite of this
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there exist a lot of very old experimental results which cannot be described by the existing the-
ories. Why? Maybe, it is time to go far from practical results and to develop the theory which
is right from fundamental point of view. We think that any applied theory must be consistent
with the theory of such a kind. At the moment we have made only initial steps. However even
from these initial steps we see that some conventional statements are not valid. For example,
everybody knows that I3(g) is responsible for a volume change of a material. But we saw that it
is not so and we have to introduce the special object to characterize the material volume. From
physical point of view it is clear that the important role in the description of inelastic properties
of the material must play the chemical potential which is responsible for the structural transfor-
mation in the material. As far we know the chemical potential was used in continuum mechanics
only in the case of the multi-component media.

We hope that the given above theory attracts the attention both physicists and mathematicians.
The theory is needed in additional minds to create the true useful applied theory.
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Generalized Continuum and Linear Theory
of Piezoelectric Materials∗

Abstract

Theory of the piezoelectric materials had been developed many years ago. It was supposed
that the stress state of the piezoelectric material can be described by means of the symmetrical
stress tensor. However it can be shown that as a matter of fact the particles of the piezoelectric
material must be considered as dipoles. It means that the theory of the piezoelectric materials
must be constructed on the base of the generalized continuum. The theory of such a kind
is presented in the report. The basic equations are derived from the fundamental laws of
Eulerian mechanics. It is shown that the type of the electric field vector is important, since it
influences on the structure of the basic equations.

1 Introduction

The brothers Pierre and Jacques Curie, in 1880, were the first to experimentally demonstrate
piezoelectric behavior in a series of crystals, including quartz and Rochelle salt. The first attempt
to derive the theory of piezoelectricity was made by Voigt in 1910.

Crystals with piezoelectric properties are very useful for different scientific and industrial
applications. The direct piezoelectric effect occurs when an applied stress produces an electric
polarization. The inverse piezoelectric effect occurs when an applied electric field produces a
strain. These coupled effects let the electronic industry to produce many useful devices such
as piezoelectric crystals, filters and resonators. First crystals were created by W. Cady in 1923
on the base of the natural α-quartz. To the present time the construction and characteristics of
crystals were essentially improved.

There exist a several theories of the piezoelectricity. All of them lead to the very complicated
equations. The exact solutions of these equations may be found only for very particular cases.
By this reason it is not easy to compare theoretical and experimental results. At the present
time it seems to be possible to say that there is no qualitative discrepancies between theory and
experiments. From the pure theoretical point of view in the theory of the piezoelectricity there
are some serious problems. The first problem. In electrodynamics the choice of the type of
the electric field vector E does not matter and there are no reasons to make this choice. In the

∗Kolpakov Ja. E., Zhilin P.A. Generalized Continuum and Linear Theory of Piezoelectric Materials // Proceedings of
XXIX Summer School – Conference “Advanced Problems in Mechanics”, St. Petersburg, Russia, 2002. P. 364–375.
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piezoelectricity it is not so and the type of E is important. In conventional theories the vector E is
supposed to be a polar vector. In what follows we consider the theories when the type of E may
be changed. The second problem. At least some piezoelectric materials are the dipole crystals.
In such a case the rotation degrees of freedom must be taken into account.

2 The classical theory of piezoelectricity

There are several theories [1, 2, 3] to describe piezoelectricity. All of them are almost the same
and based on classical theory of elasticity with the symmetrical stress tensor. Below the notation
of a book [4] will be used. The basic equations can be represented in the conventional form.

The equations of motion:

∇ · τ + ρF = ρü, τ = τT , (1)

where τ is the stress tensor, ρ is the mass density, u is the displacement vector.
The Poisson equations for crystal and vacuum respectively:

∇ · D = 0, ∇ · E ′ = 0, (2)

where D is the electrical induction, E ′ is the electrical field in the vacuum.
The piezoelectric effect equations

τ = C · ·ε − E · e, D = ε··e + ε · E, (3)

where E is the electrical field in the crystal, ε is the tensor of the linear deformation, C is the
elasticity tensor, e is the tensor of piezoelectric modulus, ε is the dielectric tensor.

This conventional theory is supposed to be able to give the description of all known experi-
mental data. It is not so easy to confirm this point of view. In many practical cases we have the
conspicuous discrepancy between the theoretical and experimental results — see, for example,
the paper [5]. However the exact reasons of this discrepancy are not known. May be the reason
is that the exact solutions of the system (1)–(3) can be found only in very particular cases. As
a rule it is possible to find the approximation solution and because of this the solution does not
coincide with an experiment.

However, it is quiet possible that the conventional theory (1)–(3) must be improved in some
points. First of all, at least some piezoelectric crystals must be considered as dipole media.
For example, it is easy calculate that the α-quartz is dipole crystal. It means that the rotational
degrees of freedom must be taken into account.

The present paper is an attempt to consider piezoelectricity from this point of view.

3 The Euler Laws of Dynamics

Let us consider the elastic body. Let xs be material (Lagrangian) coordinates. Let r(xs) and
R(xs) be radius-vectors of the points in the reference and the actual configuration respectively.
Bases in the reference and actual configurations are defined by following equations:

gs =
∂r
∂xs

, Gs(x, t) =
∂R(x, t)

∂xs
.
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Let us introduce the reciprocal bases gs Gs by means of the next expressions:

gs · gm = δs
m, Gs · Gm = δs

m.

In the nonlinear theory it is necessary to use two the Hamilton operators [6]:

◦∇ = gs ∂

∂xs
, ∇ = Gs(x, t)

∂

∂xs

for reference and actual configurations respectively.
The first law of dynamics by Euler in the integral form of momentum balance Law takes the

following form:

d

dt

∫
V

ρu̇1dV =

∫
V

ρFdV +

∫
S

T(n)dS, (4)

where u(xs) = R − r is displacement of the particle, T(n) is the stress vector, F is an external
force. Making use of Eq.(4) the Cauchy formulae

T(n) = n · T (5)

can be proved, where the second rank tensor T is called the Cauchy stress tensor. Taking into
account Eqs. (4), (5) and the divergence theorem one can derive the local form of the first law of
dynamics

∇ · T + ρF = ρü. (6)

Here and below we suppose that the displacement vector u is small, i.e. we shall consider the
linear theory. The stress tensor can be represented as decomposition

T = τ −
1

2
q × I, τ = τT , q = T× ((a ⊗ b)× ≡ a × b) , (7)

where the vector q determines the antisymmetric part of the stress tensor, I is the unit tensor. In
such a case the Eq.(6) can be rewritten in the form

∇ · τ −
1

2
∇ × q + ρF = ρü. (8)

In order to describe the rotations of a particle it is necessary to introduce the turn-tensor P or
the vector of turn ϕ. For the small rotations it is possible to use the next relation

P ≈ I + φ × I ⇒ ω = φ̇,

where ω is the angular velocity. According to the accepted model, particles of media are body-
points and, thus, we must assign inertia tensor J for every such body-point. Let us note that the
inertia tensor J is determined in the reference position, thus it has the constant value. In the actual
position the inertia tensor must be calculated in the form P · J · P T . For small angular velocities
we may use the following expression for kinetic momentum K 2:

K2 = ρ(J · φ̇(x, t) + r × u̇),

where φ(x, t) is the vector of turn of the body-point.
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The second law of dynamics can be written down in an integral form

d

dt

∫
V

K2dV =

∫
V

ρ (r × F + L)dV +

∫
S

(
r × T(n) + µ(n)

)
dS, (9)

where L is an external moment, µ(n) is the coupled stress vector. For the couple stress tensor µ

the Cauchy formula
µ(n) = n · µ (10)

is valid. After some standard transformations one can obtain the kinetic moment balance equation
in local form

∇ · µ + q + ρL = ρJ · φ̈. (11)

The equations (8) and (11) are well known in the theory of micropolar media. However, we shall
use a special form of the coupled stress tensor

µ = m × I. (12)

This means that the coupled stress tensor is antisymmetric. The vector m determines the anti-
symmetric part of tensor µ. Of course, the assumption (12) must be justified. Maybe it will be
necessary to do this justification in the future. Substituting representation (12) into equation (11)
we obtain

∇ × m + q + ρL = ρJ · φ̈. (13)

4 The equation of the Energy Balance

Now we have to discuss the energy balance equation. The integral form of this equation can be
represented as

d

dt

∫
V

{
1

2
ρu̇2 +

1

2
ρφ̇ · J · φ̇ + ρU}dV =

∫
V

{ρF · u̇ + ρL · φ̇ + Q}dV +

+

∫
S

{T(n) · u̇ + µ(n) · φ̇ + H · n}dS, (14)

where Q is the volume external energy supply and H is energy flow vector.
Equation (14) may be transformed to the following form

∫
V

{ρU̇ + u̇ · (ρü − ρF − ∇ · T) + φ̇ · (ρJ · φ̈ − ρL − ∇ · µ)−

− TT · ·∇u̇ − µT · ·∇φ̇ − Q − ∇ · H}dV = 0. (15)

Making use the laws of dynamics the equation (15) may be rewritten in the local form

ρU̇ = TT · ·∇u̇ − q · φ̇ + µT · ·∇φ̇ + ∇ · H + Q. (16)

It is easy to proof the identity

TT · ·∇u̇ − q · φ̇ = τ · ·ε̇ − q · θ̇,



Generalized Continuum and Linear Theory of Piezoelectric Materials 157

where

ε ≡ 1

2

(∇u + ∇uT
)
, θ ≡ φ −

1

2
∇ × u. (17)

The symmetric tensor ε is called the tensor of linear deformation and the vector θ is the turn of
the body-point with respect to its small neighborhood. Equation (16) takes the form

ρU̇ = τ · ·ε̇ + q · γ̇ + µT · ·∇φ̇ + ∇ · H + Q. (18)

Making use an idea of the paper [8], let us introduce into consideration two vectors E and D such
that

∇ · H + Q = E · Ḋ, (19)

where the vectors E and D will be called the electric field vector and the electric displacement
vector respectively. Thus, we may write down the energy balance equation in the final form

ρU̇ = τ · ·ε̇ − q · θ̇ + µT · ·∇φ̇ + E · Ḋ. (20)

From this it follows that the volume density of intrinsic energy ρU depends on the arguments:
ε, θ, D and ∇φ. In many cases it is more convenient to consider the vector E as independent
variable instead of D. In such a case it would be better to use the free energy

ρF = ρU − E · D. (21)

Free energy depends on ε, θ, E and ∇φ. In terms of the free energy equation (20) may be
rewritten as

ρḞ = τ · ·ε̇ + µT · ·∇φ̇ − q · θ̇ − D · Ė. (22)

We have

ρḞ =

(
∂ρF

∂ε

)T

· ·ε̇ +
∂ρF

∂θ
· θ̇ +

∂ρF

∂E
· Ė +

(
∂ρF

∂∇φ

)T

· ∇φ̇. (23)

From the comparison of equations (22) and (23) the Cauchy – Green relations follow

τ =
∂ρF

∂ε
, µ =

∂ρF

∂∇φ
, q = −

∂ρF

∂θ
, D = −

∂ρF

∂E
. (24)

Below the natural state hypothesis is accepted. This means absence of stress when strain is equal
to zero. In such a case we have the representation for the free energy in the form

ρF = ρF0 +
1

2
ε · ·C · ·ε + ε · ·M · θ +

1

2
θ · P · θ + ε · ·N · E +

1

2
E · ε · E + θ · X · E+

+
1

2
∇φ · ·Φµ · ·∇φ + θ · Φ× · ·∇φ + ε · ·Φτ · ·∇φ + E · ΦE · ·∇φ. (25)

The intrinsic energy must be a positively defined function. This means that the known restrictions
must be superposed on the tensors of elasticity: C, M, N, X, P, Φµ

, Φ×
, ΦE

, Φτ.
Substituting expression (25) into the Cauchy – Green relations (24) we shall get the stress –

strain relations
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τ =
∂ρF

∂ε
= C · ·ε + M · θ + N · E + Φτ · ·∇φ, (26)

q = −
∂ρF

∂θ
= −ε · ·M − P · θ − X · E − Φ× · ·∇φ, (27)

D = −
∂ρF

∂E
= − ε · ·N − θ · X − ε · E − ΦE · ∇φ, (28)

µ =
∂ρF

∂∇φ
= Φµ · ·∇φ + θ · Φ× + E · ΦE + ε · ·Φτ

. (29)

Tensors C, M, N, X, P, Φµ, Φ×, ΦE and Φτ describe the physical properties of the material
under consideration.

5 The special form of the energy balance equation

In order to simplify the theory let us accept the assumption (12). In such a case, instead of
equation (22) we obtain

ρḞ = τ · ·ε̇ − m · γ̇ − q · θ̇ − D · Ė, (30)

where
γ ≡ ∇ × φ. (31)

The Cauchy – Green relations (24) take a form

τ =
∂ρF

∂ε
, m = −

∂ρF

∂γ
, q = −

∂ρF

∂θ
, D = −

∂ρF

∂E
. (32)

The free energy (25) will be accepted in the more simple form

ρF = ρF0 +
1

2
ε · ·C · ·ε +

1

2
θ · P · θ +

1

2
χγ · γ +

1

2
E · ε · E+

+ ε · ·M · θ + ε · ·N · E + θ · X · E, (33)

where χ is the physical constant. The stress – strain relations (26)–(29) takes a form

τ =
∂ρF

∂ε
= C · ·ε + M · θ + N · E, (34)

q = −
∂ρF

∂θ
= −ε · ·M − P · θ − X · E, (35)

D = −
∂ρF

∂E
= −ε · ·N − θ · X − ε · E, (36)

m = −
∂ρF

∂γ
= − χ γ. (37)

Now we have to find the general form of the tensors C, P, ε, M, N, X. For this it is necessary
to use the symmetry requirements.
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6 Symmetry and the tensor transformations

When using the symmetry groups we have to take into account the type of a tensor. There exist
tensors of two different types: polar and axial tensors. Axial tensor depends on the choice of
the orientation in 3D space, but the polar tensor does not depend on the choice of the orientation
in 3D space. Usually the axial vector associates with rotations and the polar vector associates
with translations in the space. As a matter of fact we do not know the type of the electrical field
vector. In electrodynamics the type of the vector E does not matter [10]. In electro-elasticity
the type of the vector E is very important, since the type of the tensors N, X depends on the
type of the vector E. Let there be given tensors A and B, the symmetry groups of which are the
same, but the types of these tensors are different. In such a case the structures of tensors A and
B will be different. If the vector E is polar one, then in the case under consideration the tensors
C, P, ε, N, J are the polar (euclidian) tensors and M, X are the axial tensors. If the vector E is
axial one, then the tensors C, P, ε, X, J are the polar (euclidian) tensors and M, N are the axial
tensors. This fact can be established by means of experiment.

Let us accept the definition [9]
Definition 1. Orthogonal transformation of a tensor S of a rank k is a tensor

S ′ ≡ (det Q)α ⊗k
1 Q · S ≡ (det Q)αSi1...ik Q · gi1

⊗ . . . ⊗ Q · gik
, (38)

where α = 0, if the tensor S is a polar tensor and α = 1, if the tensor S is an axial tensor. Let us
accept the notation for a turn-tensor

Q(αn) = (1 − cosα) n ⊗ n + cosα I + sinα n × I,

where α is the angle of turn and the unit vector n determines the axis of turn. The tensors

Q = − I, Q = I − n ⊗ n

are called the central inversion tensor and the mirror inversion tensor respectively.
Let us define [8] the symmetry group of a tensor S.
Definition 2. Symmetry group of a tensor S is the set of the orthogonal tensors, Qs, which

are the orthogonal solutions of equation

(det Q)α ⊗k
1 Q · S = S, (39)

where S is the given tensor.
If a tensor S is known, then it is easy to find its group of symmetry. If we know the symmetry

group of some tensor, then it is possible to construct a general form of the tensor with this
symmetry group. To this end we must use the Curie – Neumann principle.

Curie – Neumann principle: The symmetry group of the cause is a sub-set of the symmetry
group of the consequence.

In our case we are working with a certain piezoelectric crystal, for example, α-quartz. Ac-
cording to the Curie – Neumann Principle, the symmetry group of tensors C, M P may be
equivalent or wider than the symmetry group of the crystal. Additional symmetry elements may
appear as effects of shape, etc. Since we consider infinite 3D crystal, it is possible to find out the
form of tensors using the invariance about all symmetry elements inherited by crystal structure.
Numerical values of components must be found out experimentally.
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For example let us consider 3-rank tensor M and present it in the following form

M = Mijkei ⊗ ej ⊗ ek.

Transformed tensor:

M ′ = (detQ)αMijkQ · ei ⊗ Q · ej ⊗ Q · ek.

If Q is the symmetry element of the crystal it is necessary to require M ′ = M. In the other form:

Mijk [(detQ)αQ · ei ⊗ Q · ej ⊗ Q · ek ⊗ −ei ⊗ ej ⊗ ek] = 0 (40)

We have 33 equations for every symmetry element, but the most of them are identities. If the
crystal under consideration has n symmetry elements, the number of equations in (40) should be
n33.

Now let us apply the conditions (40) to the tensor N. Let some crystal has the inversion tensor
(− I) as its element of symmetry. Let the vector E is the polar vector. In such a case the tensor
N must be polar as well. The conditions (40) gives N = 0. It means that the piezoeffect for this
kind of crystal is impossible. If the vector E is the axial vector, then the tensor N must be axial
as well. The conditions (40) are identities. It means that the piezoeffect for this kind of crystal
is possible. This is an experimental way to establish the type of the vector E. If we find out the
piezoelectric material with the central symmetry, then the vector E must be axial. We do not if
there exist the piezoelectric material of such a kind, but theoretically such piezoelectric material
may exist. From the other hand, it is well known that there exist the piezoelectric materials with
two planes of the mirror symmetry. Let the tensors

Q1 = I − e1 ⊗ e1, Q2 = I − e2 ⊗ e2 (41)

be the symmetry elements of some crystal. According to the Curie – Neumann Principle these
tensors must belong to the symmetry group of the tensor N. If tensor N is a polar tensor, then we
have

N =
(
N113e1 ⊗ e1 + N223e2 ⊗ e2 + N333e3 ⊗ e3

)⊗ e3 +

+ N131 (e1 ⊗ e3 + e3 ⊗ e1) ⊗ e1 + N232 (e2 ⊗ e3 + e3 ⊗ e2) ⊗ e2. (42)

If tensor N is an axial tensor, then we have another representation

N = N231 (e2 ⊗ e3 + e3 ⊗ e2) ⊗ e1 +

+ N132 (e1 ⊗ e3 + e3 ⊗ e1) ⊗ e2 + N123 (e1 ⊗ e2 + e2 ⊗ e1) ⊗ e3. (43)

In conventional theory of the piezoelectricity expression (42) is used and the vector E is supposed
to be a polar vector. However, there is some reasons in order to consider the vector E to be an
axial one. Thus it is possible that expression (43) will be better to describe the real crystals. In
any case the situation must be studied more carefully.

If the symmetry group of a crystal contains only turns, then the type of the vector E does
not matter. Below we derive the results of treating the system (40) for α-quartz which belongs
to class 32. There are two symmetry elements of class 32 structure: turn around axis x 3 about
angle 2π/3 and turn around axis x1 about angle π.
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Any two-rank tensor of quartz must have the following form:

T(2) = t1(e1 ⊗ e1 + e2 ⊗ e2) + t2e3 ⊗ e3 = t1I + (t2 − t1)e3 ⊗ e3. (44)

Also, any three-rank tensor of quartz must have the form:

T(3) = t0(e1 ⊗ a − e2 ⊗ b) + t1e3 ⊗ c + t2c ⊗ e3 + t3(e1 ⊗ e3 ⊗ e2 − e2 ⊗ e3 ⊗ e1), (45)

where

a = e1 ⊗ e1 − e2 ⊗ e2, b = e1 ⊗ e2 + e2 ⊗ e1, c = e1 ⊗ e2 − e2 ⊗ e1.

The four-rank tensor of quartz have rather complicated form and, thus we just mention that it has
14 independent components. However when we consider the tensor of elasticity the last one has
simple form due to symmetry of the stress tensor and the strain tensor. In this case we have only
6 independent components. It is common in symmetric elasticity theory to perform the 4-rank
elasticity tensor as 6 × 6 matrix.

7 The simplest piezoelectric media

There are a lot of crystals which have the piezoelectric effect. Piezoelectricity is the result of
interaction of crystal with electromagnetic field. In this work a piezoelectric crystal is supposed
to be dipole crystal. This means that low-level cell has dipole properties. Electric field influences
over dipole and creates a torque. There are two ways to impart energy to the crystal: either
through an external force, or through an external torque. In order to complete the formulation of
the theory we have to calculate the volume density of force ρF in equation (8) and the volume
density of torque ρL in equations (11) or (13). To this end we can calculate the power of the
external forces by two ways

ρ
(
F · u̇ + L · φ̇

)
= q+D+ · v+ + q−D− · v−, (46)

where the Lorentz forces are taken into account. Each point of the media is neutral dipole. Dipole
is placed along the vector d0. Then we have

q+ = − q− = q, D+ = D− = D, v+ = u̇ +
1

2
φ̇ × d0, v− = u̇ −

1

2
φ̇ × d0.

Substituting these expressions into equation (46) we obtain

ρ
(
F · u̇ + L · φ̇

)
= q (d0 × D) · φ̇ ⇒ ρF = 0, ρL = d × D, (47)

where d = qd0 is the physical characteristic of the material under consideration.
Let us write down the complete system of the piezoelectric equations.
Equations of motion

∇ · τ −
1

2
∇ × q + ρF = ρü, ∇ × m + q + d × D = ρ J · φ̈, ∇ · D = 0. (48)

The Cauchy – Green relations

τ =
∂ρF

∂ε
, m = −

∂ρF

∂γ
, q = −

∂ρF

∂θ
, D = −

∂ρF

∂E
. (49)
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In the given paper we are not going to discuss the theory of piezoelectricity for the real crystals
of a general form. Our aim is only to discuss the main features of a new theory. By this reason
let us consider the simplest expression for the free energy

ρF = µε · ·ε +
1

2
λ (trε)

2
+

1

2
p θ · θ +

1

2
χγ · γ +

1

2
εE · E + ε · ·N · E + θ · X · E. (50)

In this representation only the terms relating with the piezoeffect were taken into account in
general form.

The stress – strain relations

τ = 2µ ε + λ trεI + N · E, q = − p θ − X · E, m = − χ γ, D = − εE − ε · ·N. (51)

The geometrical equations

ε =
1

2

(∇u + ∇uT
)
, θ = φ −

1

2
∇ × u, γ = ∇ × φ, E = ∇ϕ, (52)

where ϕ is an electrostatics potential.
The classical theory of the piezoelectricity follows from equations (48)–(52) under the next

conditions

φ =
1

2
∇ × u, X = 0, χ = 0, d × D = 0, J = 0. (53)

While equations (48)–(52) can not be applied to the crystals of general form, nevertheless
they contain a several different versions of the piezoelectricity theory. At the moment it is im-
possible to accept the final decision what theory is better. First of all, we do not know the type
of the electrical field vector E. However this is very important for the piezoelectricity theory. As
a matter of fact it is necessary to construct electrodynamics on the base of rational mechanics. P.
Zhilin is quit sure that there exist only one possibility: the vector E is an axial vector (this means
that a charge is a pseudoscalar). This fact follows from an unpublished yet work by Zhilin on
electrodynamics. In any way we have to consider the two possibilities: both when the vector E
is a polar vector and when the vector E is an axial vector. Besides, from equations (48)–(52) it
follows that the piezoeffect penetrate into the theory by means of two way: either when

N �= 0, X = 0 (54)

or when
N = 0, X �= 0. (55)

Of course both tensor N and tensor X may be in general different from zero.
Let us consider the particular case. Let the dipole direction be parallel to the optic axis x 3:

d = de3. Let the symmetry group of the piezoelectric properties of a crystal contains the tensors
(41) and any turn around the axis e3.

If the vector E is a polar vector, then the tensor N is a polar tensor, but the tensor X is an axial
one. In such a case we have

N = [N1I + (N2 − N1)e3 ⊗ e3] ⊗ e3 + N3 [e1 ⊗ e3 ⊗ e1 + e2 ⊗ e3 ⊗ e2 +

+ e3 ⊗ (I − e3 ⊗ e3)] , X = X1 e3 × I, (56)
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where N1, N2, N3, X1 are true scalars.
If the vector E is an axial vector, then the tensor N is an axial tensor, but the tensor X is a

polar one. In such a case we have

N = N1 [e2 ⊗ e3 ⊗ e1 − e1 ⊗ e3 ⊗ e2 + e3 ⊗ e3 × I] , X = X1 I + (X2 − X1)e3 ⊗ e3,

(57)

where N1, X1, X2 are true scalars.
From the comparison of the expressions (56) and (57) we see the significant difference be-

tween them. It is important that this difference can be established by means of experiment. This
means that it is possible to find out the type of the electric field vector E. In order to use the
experimental data we have to solve some concrete problems and to determine what kind of the-
ory is better to describe the experimental data. This way leads to rather complicated dispersion
equations which may be represented as the roots of the equation of an order 6. It has 6 different
roots, which gives 6 dispersion curves. There are 3 acoustic and 3 optic curves. Classical theory
gives us only acoustic curves.

8 Conclusion

In the paper two different versions of the piezoelectricity theory were derived. Both of them are
new. Now we have to investigate the consequences from these theories and compare them with
the experimental data. From theoretical point of view the most interesting result is to clear if the
electric field E is a polar vector or it is an axial vector. At the moment authors are not ready to
formulate the final results, since they must be verified very carefully.

As an illustration let us consider the simplest cases, when the tensor N is equal to zero. We
have to consider two cases.

The first case: the electric field vector E is a polar vector. In such a case the strain – strain
relations (51) take a form

τ = 2µ ε + λ trεI, q = − p θ − X1e3 × E, m = − χ γ, D = − εE. (58)

The second case: the electric field vector E is an axial vector. In this case the strain – strain
relations (51) take the next form

τ = 2µ ε + λ trεI, q = − p θ − X1E − (X2 − X1)(E · e3)e3, m = − χ γ, D = − εE. (59)

If the direction of vector E coincides with the direction of the vector e 3, then the piezoeffect
is absent in the case (58). However in the case (59) the effect will be present. If we shall be able
to find out a crystal with the property (59), then it will be established that the electric field vector
E is the axial vector, what is very important from the theoretical point of view. It is obvious that
the dispersion curves will be quiet different for the cases (58) and (59). We do not actually know
if there exist the piezoelectric crystals with such properties. But the existence of such crystals is
theoretically possible. Let us point out that the cases under consideration differ from the classical
case (1)–(3) very significantly. Up to present time only classical theory was verified by means of
the experimental data. We may hope that a new theory — not necessary like the cases (58) and
(59) — will be able to describe the experimental data better and simpler then the classical theory.
In any case this possibility must be investigated in all details.
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A Micro-Polar Theory for Binary Media
with Application to Flow of Fiber Suspensions∗

Abstract

A phase-transitional flow takes place during the filling stage by injection molding of short-
fiber reinforced thermoplastics. The mechanical properties of the final product are highly de-
pendent on the flow-induced distribution and orientation of particles. Therefore, modelling of
the flow which allows to predict the formation of fiber microstructure is of particular impor-
tance for analysis and design of load bearing components.

The aim of this paper is a discussion of existing models which characterize the behavior
of fiber suspensions as well as the derivation of a model which treats the filling process as
a phase-transitional flow of a binary medium consisting of fluid particles (liquid constituent)
and immersed particles-fibers (solid-liquid constituent). The particle density and the mass
density are considered as independent functions in order to account for the phenomenon of
sticking of fluid particles to fibers. The liquid constituent is treated as a non-polar viscous
fluid, but with a non-symmetric stress tensor. The state of the solid-liquid constituent is
described by the antisymmetric stress tensor and the antisymmetric moment stress tensor.
The forces of viscous friction between the constituents are taken into account. The equations
of motion are formulated for open physical system in order to consider the phenomenon of
sticking. The chemical potential is introduced based on the reduced energy balance equation.
The second law of thermodynamics is formulated by means of two inequalities under the
assumption that the constituents may have different temperatures. In order to take into account
the phase transitions of the liquid-solid type which take place during the flow process a model
of compressible fluid and a constitutive equation for the pressure are proposed. Finally, the
set of governing equations which should be solved numerically in order to simulate the filling
process are summarized. The special cases of these equations are discussed by introduction
of restricting assumptions.

∗Altenbach H., Naumenko K., Zhilin P.A. A Micro-Polar Theory for Binary Media with Application to Flow of Fiber
Suspensions // Proceedings of XXX Summer School – Conference “Advanced Problems in Mechanics”, St. Petersburg,
Russia, 2003. P. 39–62.
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1 Introduction

1.1 Motivation

The use of short fiber reinforced thermoplastics (fiber length around 0.1–1 mm, fiber diameter
around 0.01 mm, fiber volume fraction 15–40%) has been rapidly increasing during the last
years in many industrial branches, e.g. automobile industry, pump industry, etc. [22, 30, 37, 41].
Various load bearing components (usually thin-walled structures) are manufactured from these
materials by injection molding. This manufacturing process is of particular interest because of
highly automated production, relatively short cycle time and low production costs. Furthermore,
the principal advantage of this process over other methods of composites manufacturing is the
possibility of mass production of articles with a desired geometrical complexity. However, the
mechanical properties of particle reinforced materials are quite poor if compared with those of
materials reinforced by continuous fibers. In addition, the stiffness and the strength of short-
fiber reinforced composites and thin-walled structures manufactured from these materials are
highly dependent on the orientation and the distribution of particles. As show many experimental
observations, the fiber orientation microstructure, induced by injection molding has significant
spatial variations within the part, e.g. [8, 36, 41]. The orientation of fibers and the distribution
of fibers density depend on many factors including the material type, process conditions and the
geometry of the mold cavity, e.g. [24]. Therefore, the key step in the preliminary design of load
bearing components lies in the prediction of the fiber orientation pattern for given manufacturing
conditions.

Figure 1 illustrates schematically the basic units of a typical injection molding machine and
the main stages of the processing cycle. During the filling stage, Fig. 1a, the rotating screw
moves forward and pushes the melt into the mold cavity. After the complete filling of the cavity,
a pressure is exerted and hold over a period of time by the screw in order to compensate the
polymer shrinkage (packing stage), Fig. 1b. During the cooling stage, Fig. 1c, the cavity cools
and the material solidifies. At the same time the screw moves backward, a new portion of the
material in a granular form is inserted into the barrel from the hopper. Within the heated barrel
the material is melted and homogenized by the rotating screw. After the cooling of the cavity
the mold opens and the part is ejected, Fig. 1d. The following step is the mold closing, and
the beginning of the next cycle. For a detailed description of the injection molding machine,
including its various modifications, we refer to the monographs [29, 30].

The fiber orientation microstructure is primarily formed during the filling stage and remains
unchanged after the solidification. The initial orientation of fibers may be considered to be ran-
dom as the polymer melt, homogenized within the barrel, is inserted into the cavity. During the
filling stage, the flow of the viscous polymer melt translates and rotates the suspended particles.
The micrographs of cross sections of injection molded parts, e.g. [8, 36], show that the orien-
tation of fibers exhibits a layered structure. In the mid-surface layer (core layer) the fibers are
aligned dominantly perpendicular to the flow direction. On the other hand, in the layers neigh-
boring upon the side walls (skin layers) the fibers lie dominantly parallel to the flow. In addition,
the outer surface layers (shell layers) are usually detected having lower fiber concentration and
random fiber orientation. As indicated in many works, e.g. [8, 24, 40], such a microstructure of
fiber orientation has a correspondence to the flow behavior of the melt.

During the filling, an unsteady, non-isothermal flow with a moving free surface is observed
within a geometrically complex cavity. In order to explain the suspension flow qualitatively let us
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c d

Figure 1. Basic stages of the injection molding processing cycle. a filling stage, b packing
stage, c cooling stage, d ejection, for details see [29, 30]

consider an example of a radial, laminar flow between two parallel plates. The sketch, presented
in Fig. 2, and the following comments are partly based on the results of filling simulations for
a center-gated disk published in [3, 7, 35, 40] as well as on observations of the flow induced
fiber microstructure [8, 40]. Because the thickness of the cavity is usually much smaller than
other dimensions, one can formally separate the three flow regions [7]: the gate flow region,
the lubrication region and the flow front region. Within the assumed lubrication region, Fig. 2,
the velocity component in the thickness direction is negligible and the flow may be considered
as two-dimensional. Assuming the parabolic velocity profile, one can estimate the kinematics
of motion of particles. In the mid-surface layer of the lubrication region the elements of fluid
undergo the stretching flow with the maximum strain rate in circumferential direction. Therefore,
one can expect that a fiber inserted into the cavity with an arbitrary orientation, will be aligned
in the direction perpendicular to the flow. On the other hand, the elements of fluid neighboring
the cavity walls are exposed to the shear flow in the planes of radial cross sections. This shearing
motion will align the fibers in the radial direction.

The situation is much more complicated in the neighborhood of the flow front. Firstly, as
documented in many works, e.g. [7, 14], the behavior in the free surface region is governed by
the fountain flow, which translates the elements of the fluid from the core zone towards the cavity
walls. Secondly, the lower temperature of the cavity walls leads to the formation of the frozen
layer (no-flow layer) behind the free surface, Fig. 2. The frozen layer propagates towards the
flow front. Particles that enter the frozen layer will be fixed and unaffected by the flow. Thirdly,
in the free surface zone one can expect a fiber concentration lower then elsewhere within the flow
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velocity profile

fiber directions

flow front

frozen layer

lubrication region
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Figure 2. Sketch of a radial laminar flow between two parallel plates

domain. The flow behavior in the free surface region leads to the formation of the surface layers
with lower fiber concentration and random fiber orientation. The discussed processes provide an
explanation of principal mechanisms responsible to formation of the short-fiber microstructure.
Further details regarding the flow behavior in complex cavities, e.g. the influence of abrupt
changes of geometry of the cavity, formation of knit lines, etc., are discussed in the reviewing
papers [14, 15, 39] among others.

In order to focus on the theoretical background of the filling process let us summarize some
important features of the flow behavior:

• the flow is non-isothermal with phase transitions,

• the flow is non-steady with a free surface,

• the average fiber volume fraction of suspended particles lies within the range of 15–40%.
The local concentration of fibers is affected by the flow and may vary within the flow
domain. Therefore, the commonly used concepts of dilute, semi-dilute or concentrated
suspensions are in general not suitable for the description of real processes, and

• the mold cavities are usually thin, so that the mold walls have essential influence on the
fiber motion.

These factors may have an important influence on the formation of the flow-induced fiber mi-
crostructure and should be considered in a theory which allows a description of the filling stage.
However, as far as we know, a general theory which is able to consider all the above features of
the suspensions flow does not exist at present. The aim of this paper is to discuss the theoretical
concepts for the prediction of the fiber orientation microstructure. Firstly, we give a brief review
of the models recently proposed for the description of flow of fiber suspensions. Secondly, we
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develop and discuss a novel theory which treats the filling process as a phase-transitional flow of
a binary medium.

1.2 Modelling of the Flow Induced Fiber Microstructure. State of the Art

The motion of an ellipsoidal particle immersed in a viscous fluid was firstly considered by G.B.
Jeffery in [26]. The result obtained by Jeffery is most frequently used in the literature on sus-
pended fluids. However, if applying it to injection molding simulations one should take into
account a number of important restrictions. Therefore, without discussion regarding the Jeffery
solution procedure, let us recall the main result obtained by Jeffery. In what follows we use the
so-called direct tensor calculus which is conventional in many books on mechanics and rheol-
ogy, e.g. [5, 21, 28, 32, 38, 45] among others. That means that the primary object is a vector
a rather than a triple of numbers (coordinates). A second rank tensorA is any finite sum of the
pairs of vectorsA = a⊗ b + . . . + c⊗ d. If it is desirable, one can introduce a basisgi. In this
casea = aigi, A =

(
aibj + . . . + cidj

)
gi ⊗ gj. Below we prefer to operate with vectors and

tensors rather than with their coordinatesai, Aij = aibj + . . . + cidj.
The undisturbed flow (the flow without particle) is supposed by Jeffery to satisfy the follow-

ing restrictions

∇∇∇V0(x) ≡ ΛΛΛ = const, tr(ΛΛΛ) ≡∇∇∇ ··· V0(x) = 0, ⇒ V0 = r0 ···ΛΛΛ, ΛΛΛ = d − φφφ× E,

d ≡ 1

2

(∇∇∇V0 +∇∇∇VT
0

)
, tr(d) = 0, φφφ ≡ 1

2
∇∇∇× V0, V0 ··· ∇∇∇V0 = 0 or ΛΛΛ ···ΛΛΛ = 0, (1)

whereV0 is the fluid velocity,E is the identity tensor,∇∇∇ is the nabla operator,

r0 = xk i′k, i′k ··· i′s = δks,

and the orthonormal unit basis vectorsi′k are fixed in the reference system. The last two re-
strictions in Eqs. (1) are not given in Jeffery’s work in the explicit form. However, they follow
immediately from the Navier–Stokes equations

−∇∇∇p + µ∇∇∇ ···ΛΛΛ = ρ

(
∂V0

∂t
+ r0 ···ΛΛΛ ···ΛΛΛ

)
⇒ p = p0 = const, r0 ···ΛΛΛ ···ΛΛΛ = 0 (2)

with p as the pressure,µ as the fluid viscosity andρ as the fluid density. Only the underlined
terms in Eqs. (2) are not identically zero. Taking into account that the pressurep must be limited
in the space we obtain the above mentioned restrictions. Let us define the ellipsoidal particle by
means of the second rank tensorA0

A0 = a2i′1 ⊗ i′1 + b2i′2 ⊗ i′2 + c2i′3 ⊗ i′3 ⇒ A−1
0 = a−2i′1 ⊗ i′1 + b−2i′2 ⊗ i′2 + c−2i′3 ⊗ i′3,

where the numbersa, b, c are the semi-axes of the ellipsoid. Letik with ik ··· is = δks be a
triplet of the orthogonal unit basis vectors rigidly connected with the particle. Let us introduce
the rotation tensorP(t) and the angular velocity vectorωωω(t) of the ellipsoidal particle by

P(t) ≡ ik(t)⊗ i′k, Ṗ(t) = ωωω(t)× P(t) ⇒ ṁ(t) = ωωω(t)×m(t), (3)

wherem(t) ≡ P(t) ···m0 and m0 is an arbitrary vector fixed with respect to the ellipsoidA0. In
this case the rotating ellipsoid is determined by the tensor

A(t) = P(t) ··· A0 ··· PT (t). (4)
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The surfaceS of the rotating ellipsoid is determined by the equation

r ··· A−1(t) ··· r = 1, r = xk ik, r(t) = P(t) ··· r0. (5)

Jeffery considered the following problem: find the solution of quasi-static Navier–Stokes
equations

−∇∇∇p + µ4V = 0, (6)

satisfying the boundary conditions

V(t)|S = ωωω(t)× rS(t), and V(t) → V0 when |r | → ∞. (7)

Jeffery solved Eqs. (6)–(7) and calculated the moment acting on the particle. Setting this moment
equal to zero Jeffery determined the angular velocityωωω of the particle in the following form

ωωω = φφφ +
(
tr(A) E − A

)−1 ··· (A ··· d)× , (a⊗ b)× ≡ a× b. (8)

This is the invariant form of Eqs. (36) presented in the Jeffery paper. Let us emphasize that the
constant vectorφφφ and the constant tensord are defined in terms of the vectorV0 by means of
Eqs. (1). However, the tensorA contains the unknown rotation tensorP(t). In order to findP(t)
one has to solve the left Darboux problem, see e.g. [43]

Ṗ =
[
φφφ +

(
tr(A) E − A

)−1 ··· (A ··· d)×
]
× P.

If we multiply this equation by the vectorm0, then we can rewrite the Jeffery result for an
arbitrary vectorm(t) rigidly connected with the ellipsoid

ṁ(t) =
[
φφφ +

(
tr(A) E − A

)−1 ··· (A ··· d)×
]
×m(t). (9)

A more familiar form of Eq. (9) can be obtained in the case when the tensorA(t) is transversely
isotropic and the vectorm(t) is the axis of symmetry ofA. If a = b 6= c then we have

A = c2m⊗m+a2 (E − m⊗m) ⇒ (
tr(A) E−A

)−1
=

1

2a2
m⊗m+

1

c2 + a2
(E − m⊗m) ,

(A ··· d)× = (c2 − a2)m× d ···m,
(
tr(A) E − A

)−1 ··· (A ··· d)× =
c2 − a2

c2 + a2
m× d ···m.

With these relations Eq. (9) can be rewritten as follows

ṁ =

(
φφφ +

c2 − a2

c2 + a2
m× d ···m

)
×m. (10)

Using Eq. (1) and eliminating the vectorφφφ from Eq. (10) we obtain the most popular form of
the Jeffery result

ṁ = (d − ΛΛΛ) ···m +
c2 − a2

c2 + a2

(
m2d ···m − (m ··· d ···m)m

)
. (11)
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with m = |m|. If m = 1 then instead of Eq. (11) we have

ṁ = (d − ΛΛΛ) ···m +
c2 − a2

c2 + a2
(d ···m − (m ··· d ···m)m) , ΛΛΛ ≡∇∇∇V0, 2d = ΛΛΛ + ΛΛΛT . (12)

This is exactly the form of the Jeffery equation used in many works on fiber suspensions, e.g.
[1, 4, 3, 15, 25, 39]. Note that the vectorV0 satisfies the very strong restrictions given in Eq.
(1). It was not proved wether the equation (12) can be used in other cases. To be correct we
have to mark that Eqs. (9)-(12) are not present in the Jeffery paper. However, the necessary
theoretical background for the derivation of these equations was well-known at the beginning
of the XIX century. In derivation of Eqs. (9)-(12) the only essential result is the expression (8)
for the angular velocity which was found by Jeffery. Thus we may consider Eqs. (9)-(12) as the
Jeffery equations.

Now we are able to discuss the applications of the Jeffery result in the literature on the subject
under consideration. Firstly, instead of Eqs. (12) the following equations are used

ṁ = (d − ΛΛΛ) ···m +
c2 − a2

c2 + a2
(d ···m − (m ··· d ···m)m) , ΛΛΛ ≡∇∇∇V, 2d = ΛΛΛ + ΛΛΛT , (13)

where the vectorV is assumed to be the actual flow velocity without any restriction, except
∇∇∇ ··· V = 0. Secondly, it is supposed that the solution of Eq. (13) with the initial condition
|m(0)| = 1 is a unit vector, see, for example, p. 257 of [25]. However, it is easy to prove that this
assumption is not valid for any case. The restrictionm ···m = 1 must be connected with the Eq.
(13) as an additional condition.

In the pioneering works on the injection molding simulations, e.g. [40], the Jeffery equation
is numerically integrated for the known velocity field in order to calculate the fiber directions.
The velocity gradient is computed by solving the flow problem of a Newtonian fluid. Such an
approach is based on the assumption that interactions between the particles are negligible. In
[39], p.165, Tucker and Advani pointed out that “the interaction between the multiple particles
appears to be the most significant “non-Jeffery” effect in practical composite material problems”.
The common approach in modelling of the filling process is to treat the flow of a fiber suspension
as the flow of a single-component anisotropic fluent medium, e.g. [15, 39]. Following this
approach, the main problem is to find a rheological equation connecting the stress generated by
the motion of the fluid with local characteristics of the motion. For a viscous incompressible
fluid Batchelor [6] introduced the following equation

σσσ = −pE + µµµ······ΛΛΛ, ΛΛΛ =∇∇∇V, (14)

whereσσσ is the stress tensor andµµµ is the fourth rank viscosity tensor determined by the local state
of the fluid. Various approaches have been proposed in order to find a particular form of the
constitutive equation. Batchelor [6] discussed the volume averaging procedure for a suspension.
An important point in his consideration is the assumption that the inertia forces associated with
fluctuations about the average motion are small if compared with the viscous forces and that the
equation of the motion of a fluid reduces to the linear quasi-static Stokes equation. He found the
following expression for the bulk stress in a suspension

σσσ = −pE + µ(ΛΛΛ + ΛΛΛT ) + σσσp (15)

In order to obtain the particle stressσσσp in Eqs. (15) one should calculate the local velocity and
stress fields of the fluid around a particle. Batchelor discussed the averaging procedure for dilute
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suspensions, i.e. assuming that the flow around each particle is unaffected by the presence of
others. Based on the Jeffery solution for an ellipsoidal particle Batchelor obtained an explicit
expression forσσσp. Finally, he calculated the viscosity tensorµµµ in Eq. (14) for the case of
perfectly aligned particles for a given orientation state as well as for randomly oriented particles
by means of averaging over all orientations.

The state of art on rheology of fiber suspensions can be found in reviews [15, 33, 39]. In
the literature on rheology one distinguishes between dilute, semi-dilute and concentrated sus-
pensions. Assuming that the immersed particles are slender bodies of revolution witha andc as
particle dimensions,ap = c/a > 1 as the particle aspect ratio andξ is the fiber volume fraction,
one specifies the suspension to be dilute whenξa2

p < 1; semi-dilute when1 < ξa2
p < ap and

concentrated whenξa2
p > ap. This classification is made with regard to the kind of interactions

between the particles by flow of fiber suspension, e.g. [15, 39]. In the first case one assumes no
interactions, in the second case one assumes the interaction of the hydrodynamic nature and in
the third case the interactions may have both hydrodynamic and direct mechanic origins. In fact,
the concepts of dilute or non-dilute suspensions are intuitive assumptions rather then approxima-
tions of any general constitutive model. Such a model does not exist. The only known fact is that
the commercial materials are non-dilute, see, e.g. [39].

In order to account for the fiber-fiber interactions as well as to consider the randomness of the
fiber orientation at the inlet zone, the commonly used approach is the orientational averaging. As
an example, let us introduce the model proposed by Dinh and Armstrong [12]. The starting point
is the expression (15) for the bulk stress. In order to avoid the evaluating of the local flow fields
around each particle, the authors considered a single slender body test particle in an effective
continuous medium. They used the orientational probability density functionψ(m), wherem is
the unit vector associated with a test particle. Further, the influence of the surrounding media
on the test particle is considered by means of a surface force, which is determined from the
transversely isotropic drag law. The resulting expression can be formulated as follows

σσσ = −pE + µ(ΛΛΛ + ΛΛΛT )······
[

(4)E +
nl2

12µ
ζpa4

]
, a4 =

∫

(S)

Ψ(m)m⊗m⊗m⊗mdS. (16)

Heren is the number of particles per unit volume,l is the particle length, andζp is the drag
coefficient determined by

ζp =
2πµl

ln(2h/d)

with d as the fiber diameter andh = (nl)−1/2 for aligned systems whileh = (nl2)−1 for
random systems. In (16)(4)E is the fourth rank identity tensor anda4 denotes the fourth rank
structure tensor, which characterizes the actual fiber orientation state anddS is a differential
element on a unit sphere. In order to formulate the evolution equation for the structure tensor
one needs an equation for the probability density function. Assuming that the mechanism of
fiber-fiber interactions is governed by the rotary Brownian motion, e.g., [39] the Smoluchowski
type equation, e.g. [9, 13], is applied

Ψ̇ +∇∇∇s ··· (Ψωωω − Dr∇∇∇sΨ) = 0, ωωω = m× ṁ, (17)

where ˙(. . .) denotes the material derivative,Dr is the coefficient of rotary diffusion, and

∇∇∇s(. . .) = ekεijkmi
∂(. . .)

∂mj
, m ···m = 1
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with εijk as the permutation symbol. For the modelling of flow of fiber suspensions Eq. (17)
is modified assuming thatDr is a scalar valued function ofd, e.g. [39]. Furthermore,ωωω in Eq.
(17) is treated as the angular velocity of a single particle. Following [1] the Jeffery’s result (11)
is inserted into Eq. (17). Using the series representation ofΨ(m) by means of the spherical
harmonics and introducing the moments ofΨ(m) by

an =

∫

(S)

Ψ(m)m⊗ndS, n = 2, 4, . . . ,

wherean are termed asn-th rank structure tensors and(. . .)⊗n is then-th dyadic product, Eq.
(17) is replaced by a set of coupled evolution equations foran [1]. In the injection molding
simulations the evolution equation fora2

ȧ2 = (a2 ··· w − w ··· a2) + λ(d ··· a2 + a2 ··· d − 2a4······d) − 6Dr

(
a2 −

1

3
E

)
, w = ΛΛΛ − d (18)

is usually solved while fora4 a closure approximation is applied. Various types of closure ap-
proximations can be found in [1, 2, 11, 15, 31]. Let us note that the model (16) in connection
with the evolution equation of the type (18) is widely used in injection molding simulations, e.g.
[4, 10]. The tensora2 (and in some casesa4) provides the information about the actual state of
the fiber orientation.

Finally, let us discuss the anisotropic fluid models developed within the framework of the
continuum mechanics. Based on the invariance conditions Ericksen [17] found a simplest form
of the constitutive model for a transversely isotropic single-component incompressible fluid

σσσ = −pE + 2µd + (µ1 + µ2m ··· d ···m)m⊗m + 2µ3[m⊗ (d ···m) + (d ·m)⊗m],

◦
m≡ ṁ − w ···m = λ(d ···m − (m ··· d ···m)m), m ···m = 1.

(19)

Hereλ andµ, µ1, µ2, µ3 are constants,m is a unit vector and
◦

(. . .) denotes the co-rotational
time derivative. The concept of Ericksen’s fluid associates the anisotropic behavior of a fluid
with a directorm, changing with time according to the second equation in (19). Let us note
that the second equation in Eqs. (19) formally coincides with the Jeffery Eq. (13) for the single
particle by settingλ = (c2 − a2)/(c2 + a2). However, it should be noted that Eqs. (19) and
(13) are derived based on two different considerations. Furthermore, the constitutive model
(19) must be introduced together with conservation laws in continuum mechanics [16]. Eringen
[18, 19] developed a micro-polar theory of anisotropic fluids and applied it to the flow of fiber
suspensions. The important feature of his theory is the modified balance law for the inertia tensor
which accounts the phenomenon of sticking of the fluid to suspended particles. Assuming the
inertia tensor to be transversely isotropic Eringen derived the evolution equation (Eq. (6.4) in
[18]) which is similar to Eqs. (13) and (19).

In the last two decades a large amount of work has been directed to simulations of the injec-
tion molding process. For an overview of existing models and their numerical realizations we
refer to [14]. Furthermore, various commercial software have been developed, e.g. Moldflowr

[27], which have a purpose to simulate the whole injection molding cycle and to optimize the
process conditions. Some years ago the commercial filling software have been extended by the
units allowing the prediction of fiber orientation microstructure. These units are based on the
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above discussed rheological equations of state and compute the fiber orientation by means of
structure tensors. The present state of art on modelling the flow of fiber suspensions is given in
[15, 39], where a number of open questions is discussed. Regarding the theoretical approach one
may note that there is no unified concept in modelling of suspended fluids and as pointed out in
[19], p. 117, “at present there is no agreement on any one particular theory”.

1.3 The scope of the paper

In order to underline the purposes of our approach let us introduce the following definitions. Let
η1(x, t) be the density of fluid particles andη2(x, t) be the density of rigid particles at a given
pointx of an inertial reference system. Specifying bydN1 anddN2 the number of particles for
the first and the second components in a control volumedV we can write

dN1 = η1(x, t)dV, η1 ≥ 0; dN2 = η2(x, t)d V, η2 ≥ 0.

The functionsη1(x, t) andη2(x, t) are the principal unknowns in the theory of mixtures. The
functionη2(x, t) is particularly important, because it characterizes the distribution of the rigid
particles in a fluid. This distribution will affect the final mechanical properties of the material
after the processing. A strong difference between the properties leads to the necessity to intro-
duce different models for each of the two components. The first one is a set of fluid particles
characterized by the particle densityη1 and the mass densityρ1. In what follows this constituent
will be termed as the liquid component. The second component is a set of rigid particles im-
mersed in the viscous fluid withη2 andρ2 as the particle and mass densities. Below, by making
constitutive assumptions, we shall exclude the possibility that the rigid particles may form a solid
body. Thus, we shall assume that the constituent of particles-fibers behaves like a liquid. In what
follows the second component will be termed as the solid-liquid component.

The liquid component may be considered as a viscous fluid with some additional properties.
For example, the stress tensor of the fluid in our model will be nonsymmetric. For the solid-liquid
component it is necessary to consider not only the translation motion but also the rotations. Multi-
component mixtures were studied in many works, e.g. [20, 34] (see also works cited therein). In
the physico-chemical hydrodynamics the diffusion processes play an essential role [34]. Namely,
the diffusion determines the relative velocities of constituents by means of the Fick laws. In our
case these velocities are determined by the external conditions and by the viscous properties of
the fluid. The diffusion can be neglected.

In what follows let us briefly describe the framework of the paper and the distinctive features
of our approach:

1. We will assume the particle density and the mass density as independent functions in order
to take into account the phenomena of sticking of the fluid particles to the rigid particles.
Consequently, the particle balance equations and the mass balance equations are indepen-
dent from each other.

2. The liquid constituent will be supposed to be a non-polar viscous fluid, but with the non-
symmetric stress tensor.

3. The state of the solid-liquid constituent will be described by means of the antisymmetric
stress tensor and of the antisymmetric moment stress tensor.
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4. Let the vectorsV1(x, t) andV2(x, t) be the velocities of the particles of liquid and solid-
liquid components, respectively. We will assume thatV1(x, t) 6= V2(x, t), i.e. in our
approach, the constituents may slide with respect to each other. Therefore, the forces of
friction between components will be taken into account.

5. The equations of motion are given for open physical systems and contain additional terms
which are responsible for the phenomenon of sticking.

6. The chemical potential is introduced on the base of the so-called reduced equation of
the energy balance. Our definition differs from the definitions proposed in [20, 34]. By
neglecting the sticking of the fluid particles to fibers, the chemical potential is conserved.

7. We assume that the constituents may have different temperatures. Such a difference may
be important if we want to produce the material with desired mechanical properties. Thus,
the temperature fields are in general discontinuous. In such a case the conventional form
of the second law of thermodynamics, for example the Clausius-Duhem inequality, is not
applicable. So, we give an alternative statement of the second law of thermodynamics as a
set of two inequalities. The problem connected with the modelling of the heat exchange is
discussed.

8. The main purpose of our approach is to describe the real technological process in which
the mixture has a stage of solidification. The solidification takes place not only at the final
stage of the process, but also during filling near the cavity walls. Therefore, the models of
suspensions, based on the assumption of the anisotropic incompressible viscous fluid, are
in general not suitable. In this paper we will discuss a model for compressible fluid with
phase transitions of the liquid-solid type. The phase transitions are described by means of
a proposed constitutive equation for the pressure.

2 Kinematical relations

It seems to be evident that in general a continuous medium cannot be modelled as a smooth dif-
ferentiable manifold. Indeed, as it is known from experience, the particles which are neighbors
at a moment of time, do not necessarily occupy neighboring positions at any later time. In such a
medium one can expect the occurrence of tangential discontinuities or the nucleation of cavities.
For a multi-component medium the situation is more complicated since different components
may glide on each other and interact, and the interaction takes place between different species.
For instance, letA1, B1, C1, . . . be some marked parts of a first component andA2, B2, C2, . . .

be the parts of the second one. Let us assume that at a moment of time the partsA1 andA2 inter-
act. Then, at any other moment of time another two parts, for exampleA1 andB2 will contact.
From this follows that the material description, which assumes the neighboring particles to be al-
ways neighbors, is in general not applicable for multi-component media. The only possible way
to formulate a theory for such the media is the use of the pure spatial description. That means
that in contrast to the material description, all principal operators in the theory must be directly
defined within the reference frame rather then over a differentiable manifold. The introduction
of these operators is the purpose of the following considerations.

Let us introduce a control volume in the reference frame and assume that the volume at the
time t is filled by the medium. The medium may move with respect to the reference frame, or
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the medium may be at rest and the reference frame may move with respect to the medium. The
difference between these two situations is not essential from the kinematical point of view. The
important role plays the velocity fieldV(x, t), where the vectorx defines a point of the reference
frame. Thus, the vectorV(x, t) characterizes the velocity of that particle which at the given
moment of timet occupies the pointx. Let K(x, t) be a given field, which can be a tensor of any
rank. This field describes a physical quantity of that particle, which is placed at the pointx of the
reference frame at the given moment of time. Let us use the following definition of the material
derivative [44]:

The material derivative of a quantityK(x, t) is the limit of the fraction

δ

δt
K(x, t) = lim

4t→0

K(x +4s, t +4t) − K(x, t)

4t
, 4s = V(x, t)4t. (20)

In this definition4s (by neglecting the terms of the second and higher order of magnitude) is the
way, passed within the time4t by that particle, which at the timet was placed at the pointx.
The nominator in Eq. (20) can be rewritten by means of the following expansion

K(x +4s, t +4t) = K(x, t +4t) +4s··· ∇∇∇K(x, t +4t).

From the definition (20) follows

δ

δt
K(x, t) =

d

dt
K(x, t) + V(x, t) ··· ∇∇∇K(x, t). (21)

In the first term of the right hand side in Eq. (21) one can formally replace the total time derivative
by the partial one. However, such a replacement may lead to difficulties by a change of the
reference frame. In several situations the above definition of the material derivative may be
not convenient, because the point of observation is assumed to be fixed. Within the conventional
Euler’s description this is always the case. However, by a change of the reference frame one needs
to consider a moving point of observation. Therefore, let us introduce an extended definition of
the material derivative. Lety(t) be a point of observation, which can move according to any
given law. The velocity fieldV(x, t) is defined in those points of the reference frame, which
are occupied by particles of the medium. Therefore, it is also defined in the pointsy(t). Let us
accept the following modification of the definition (20)

δ

δt
K(y(t), t) = lim

4t→0

K(y(t +4t) +4s, t +4t) − K(y(t), t)

4t
, (22)

where

4s = Vr(y(t), t)4t, Vr(y(t), t) = V(y(t), t) −
dy(t)

dt
.

Here the velocityVr(y(t), t) is the relative velocity of the material point with respect to the
moving pointy(t).

Now instead of (21) we have

δ

δt
K(y(t), t) =

d

dt
K(y(t), t) +

(
V(y(t), t) −

dy
dt

)
··· ∇∇∇K(y(t), t). (23)

The proposed definition (23) does not coincide with the conventional definition of the material
derivative. However, one can rewrite Eq. (23) as follows

δ

δt
K(y(t), t) =

∂

∂t
K(y(t), t) + V(y(t), t) ··· ∇∇∇K(y(t), t). (24)
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The last expression just coincides with the commonly used material derivative, the difference
is only y(t). However, in Eq. (24) the relative character of the velocityVr(y(t), t) is hidden.
The expression (24) looks like the total derivatived/dt. Therefore, in the literature the notation
d/dt is usually preferred. However, in the general case we have to distinguish betweend/dt

andδ/δt. In fact, the total time derivative is

d

dt
K(y(t), t) =

∂

∂t
K(y(t), t) +

dy(t)

dt
··· ∇∇∇K(y(t), t),

dy(t)

dt
6= V.

The last expression coincides with the material derivative if and only if the point of observation
y(t) coincides with the position vector of a fixed particle. In the case of multi-components media
such a situation is impossible because in a point of observation may be several different particles
with different velocities.

For the material derivative all rules of differentiation are valid. For example

δ

δt
(a⊗ b) =

δa
δt
⊗ b + a⊗ δb

δt
.

On the other hand, it is known that

d

dt
∇∇∇ =∇∇∇ d

dt
,

δ

δt
∇∇∇ 6=∇∇∇ δ

δt
.

In binary mixtures one usually assumes that one point of a reference frame can be simul-
taneously occupied by the particles of both species, e.g. [34]. The mixture considered in this
work consists from two components. The first one includes particles of the viscous fluid. The
second one is built up from small rigid bodies – fibers, which can be considered as ellipsoids of
revolution. Let us introduce the notations:V1(x, t) is the velocity vector of that particle of the
fluid, which at the given timet is placed inx of the reference frame;V2(x, t) is the velocity
vector of that particle-fiber, which at the given timet occupies the placex of the reference frame.
The vectorV2(x, t) will be treated as the velocity vector of the center of mass of a particle-fiber.
Let us note that in theories of mixtures one usually assumesV1(x, t) = V2(x, t) [34].

By taking the material derivative of the velocity vectorV1(x, t), we obtain the acceleration
vector of a fluid particle

W1(x(t), t) =
d

dt
V1(x(t), t) +

(
V1(x(t), t) −

dx(t)

dt

)
··· ∇∇∇V1(x(t), t).

The material derivative of the velocity vectorV2(x, t) yields the velocity of the center of mass
of a particle-fiber

W2(x(t), t) =
d

dt
V2(x(t), t) +

(
V2(x(t), t) −

dx(t)

dt

)
··· ∇∇∇V2(x(t), t).

Here we used the definition (23) assuming a moving point of observation. One can examine the
difference between Eqs. (23) and (24) by calculating the acceleration vectors for the case

V → V + V0, V0 = const.

Such a replacement is conventional, if one needs to use the Galilei relativity principle or to change
the reference frame. It is clear that such a transformation should not change the accelerations.
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This will be the case if we use Eq. (23). But when applying Eq. (24) one must be careful to
avoid mistake.

Let us assume that the fluid particle and the particle-fiber, occupying at a given timet the
point x, at t0 ≤ t were located atx0 andx∗0, respectively. The displacement vectorsu1(x, t) =
x − x0 andu2(x, t) = x − x∗0 are determined from the velocities by means of the following
relations

Vi(x, t) =
d

dt
ui(x, t) + Vi(x, t) ··· ∇∇∇ui(x, t) ⇒ d

dt
ui(x, t) = Vi(x, t) ··· gi(x, t) (25)

with the notations
gi(x, t) ≡ (E −∇∇∇ui(x, t)) , detgi(x, t) > 0. (26)

By calculating the gradient of both parts of the second equation in (25) and taking into account
the permutability of the gradient operator and the total time derivative, we obtain

d

dt
∇∇∇ui(x, t) + Vi ··· ∇∇∇∇∇∇ui(x, t) =∇∇∇Vi(x, t) ··· gi(x, t) ⇒

∇∇∇Vi(x, t) =

(
d

dt
∇∇∇ui(x, t) + Vi ··· ∇∇∇∇∇∇ui(x, t)

)
··· g−1

i (x, t). (27)

Equations similar to (27) can be found in [32]. The last equation can be rewritten in the equivalent
form

∇∇∇Vi(x, t) = −

(
d

dt
gi(x, t) + Vi ··· ∇∇∇gi(x, t)

)
··· g−1

i (x, t). (28)

Equations (28) will be used later for the formulation of the reduced energy balance equation.
Till now, we did not make any distinction between the fluid particles and the particles-fibers.

Let us introduce the rotations of particles-fibers, which will define their orientation in the ref-
erence frame. The determination of this orientation is one of the main purposes of the theory.
Let us presume that at each pointx of the reference frame a tripledk with dk ··· dm = δkm

is given. Let us introduce the proper orthogonal tensorP(x, t), which describes the rotation of
the particle-fiber, located at the pointx at the timet with respect to the tripledk. Further, let
us calculate the angular velocity of the rigid particle. Within the framework of the rigid body
dynamics one can apply the Poisson equation [43]

d

dt
P = ωωω× P, (29)

whereωωω is the angular velocity vector of a point in the body. It is clear that the definition (29)
is not applicable to our case, since at different instances of time the pointx of the reference
frame is occupied by different particles. Therefore, the time derivative in (29) cannot be treated
as a characteristic of a particle. Instead of the definition (29) we have to use the following
modification of the Poisson equation

d

dt
P(x(t), t) +

(
V2(x(t), t) −

dx(t)

dt

)
··· ∇∇∇P(x, t) = ωωω(x(t), t)× P(x(t), t). (30)

Here the subscripts for the rotation tensor and for the angular velocity are dropped since these
quantities are defined for the particles-fibers only. Let us prove whether the definition (30) cor-
responds to our intuitive considerations. Consider two motions of the same particle and assume
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that these two motions have different translation parts, but the same rotations. LetxA(t) and
yA(t) be two translations of the particleA so that

yA(t) = xA(t) + fA(t), P(xA, t) = P(yA, t).

Making use of Eq. (23) it can be shown thatωωω(xA, t) = ωωω(yA, t). That means that the angular
velocity of the particle does not depend on its translation motion.

3 Particle balance and mass balance equations

Let us consider three different cases. In the first one, we assume that the total number of particles
in both the components remains unchanged. It seems to be evident that such a strongly restricting
assumption is not satisfied in the reality. In the second one, we suppose that the total number of
fibers remains constant, while the mass of fibers may vary due to the sticking of the fluid particles
to the fibers. In this case the number of fluid particles is changing, i.e. the density of fluid particles
η1 is not constant. On the other hand, the density of particles-fibersη2 remains constant, while
the mass density of particles-fibers is changing. Finally, in the third situation both the density of
fluid particles and the density of particles-fibers are changing. That means that not only the fluid
particles can stick to the fibers but also the fibers may stick to each other. The sticking of fibers
may lead to the formation of grains-clusters, which must be treated as new particles. Evidently,
the last case is more realistic for concentrated suspensions. It is difficult to verify, how important
are the effects of sticking for the short-time filling processes. The quantitative influence of the
sticking effects on the flow process seems to be not significant. Nevertheless, let us discuss all
the three situations separately.

Liquid and solid-liquid constituents have constant compositions. Let V be a control vol-
ume in the reference frame and the boundary ofV be a closed surfaceS = ∂V. Then, for each of
the introduced species we can formulate the following particle balance equations

d

dt

∫

(V)

η1 (x,t) dV = −

∫

(S)

η1n ··· V1dS = −

∫

(V)

∇∇∇ ··· (η1V1) dV, (31)

whereV1(x, t) is the velocity of fluid particles,

d

dt

∫

(V)

η2 (x,t) dV = −

∫

(S)

η2n ··· V2dS = −

∫

(V)

∇∇∇ ··· (η2V2) dV, (32)

whereV2(x, t) is the velocity of particles-fibers. Note that in the case of the moving point of

observation one should replaceVi by Vi −
dx
dt

in Eqs. (31) and (32).

In the local form Eqs. (31) and (32) can be written as

dη1

dt
+∇∇∇ ··· (η1V1) = 0,

dη2

dt
+∇∇∇ ··· (η2V2) = 0. (33)

Analogously to Eqs. (33), we can formulate the mass balance equations

dρ1

dt
+∇∇∇ ··· (ρ1V1) = 0,

dρ2

dt
+∇∇∇ ··· (ρ2V2) = 0, (34)
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whereρ1 andρ2 are mass densities of the liquid and the solid-liquid components, respectively.
Let us introduce the following notations for the material derivatives

δ1f

δt
≡ df

dt
+

(
V1 −

dx
dt

)
··· ∇∇∇f,

δ2f

δt
≡ df

dt
+

(
V2 −

dx
dt

)
··· ∇∇∇f, (35)

wheref is an arbitrary scalar function (or any tensor-valued function). With the introduced
notations Eqs. (33) and (34) take the following form

δ1η1

δt
+ η1∇∇∇ ··· V1 = 0,

δ2η2

δt
+ η2∇∇∇ ··· V2 = 0, (36)

δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = 0,

δ2ρ2

δt
+ ρ2∇∇∇ ··· V2 = 0. (37)

The liquid constituent has a variable composition. In this situation, the density of the
liquid component in the selected reference frame may change not only due to the flow, but also
as a consequence of the sticking of the fluid particles to the particles-fibers. The fluid particles
connected to fibers cannot be considered as fluid particles anymore. They should be related to
the mass of fibers. The particle density of fibers may only change with regard to the motion of
particles-fibers.

The particle balance equation for the liquid component (31) should be modified as follows

d

dt

∫

(V)

η1 (x,t) dV =

∫

(V)

χ1 (x,t) dV −

∫

(S)

η1n ··· V1dS =

∫

(V)

[χ1 (x,t) −∇ ··· (η1V1)] dV, (38)

where the functionχ1 is the rate of production (destruction) of fluid particles at a point of the
reference frame.

The particle balance equation for the fibers remains unchanged. Therefore, Eqs. (36) take
now the form

δ1η1

δt
+ η1∇∇∇ ··· V1 = χ1,

δ2η2

δt
+ η2∇∇∇ ··· V2 = 0. (39)

The equations of the mass balance should be modified as follows

δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = χ1m,

δ2ρ2

δt
+ ρ2∇∇∇ ··· V2 = χ2m, (40)

where the functionsχ1m andχ2m characterize the rates of mass production (destruction) of fluid
particles and particles-fibers, respectively. Because the total mass densityρ = ρ1 + ρ2 does not
change, the equation of the mass balance for the considered binary medium can be written down
in the integral form

d

dt

∫

(V)

ρ (x,t) dV = −

∫

(S)

ρn ··· VmdS = −

∫

(V)

∇ ··· (ρVm) dV, ρVm = ρ1V1 + ρ2V2. (41)

The local form of Eq (41) is

δmρ

δt
+ ρ∇∇∇ ··· Vm = 0,

δmf

δt
≡ df

dt
+

(
Vm −

dx
dt

)
··· ∇∇∇f. (42)
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Here the point of observationx(t) is selected to be the same for both the components. If we add
Eqs. (40) and then subtract from the result Eq. (41), we obtain

χ2m = − χ1m, (43)

i.e. the amount of mass acquired per unit time by the solid-liquid component per unit time is
equal to the amount of mass lost by the liquid component.

Liquid and solid-liquid components have variable compositions.The particle balance
equations can be formulated according to the above discussed procedure

δ1η1

δt
+ η1∇∇∇ ··· V1 = χ1,

δ2η2

δt
+ η2∇∇∇ ··· V2 = χ2, (44)

where the functionχ2 characterizes the production rate of particles-fibers. The mass balance
equations remain the same

δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = χ1m,

δ2ρ2

δt
+ ρ2∇∇∇ ··· V2 = χ2m, χ2m = −χ1m. (45)

Let us emphasize that the introduced particle densities and the mass densities are independent
functions. Consequently, Eqs. (44) and (45) are independent. However, the functionsχ1 andχ1m

can be assumed to be connected by means of equationχ1m = mχ1, wherem characterizes the
mass of one fluid particle. The last assumption is evident, since the fluid particles cannot form
clusters.

Eqs. (44) and (45) can be rewritten in a scalar form. From Eqs. (28) follows

∇∇∇ ··· Vi(x, t) = −g−1
i (x, t) ··· ···

(
δi

δt
gi(x, t)

)
. (46)

In order to transform the above equation, one can use the following formula, which is valid for
any nonsingular tensorgi

g−1
i =

1

I3(gi)

(
∂I3(gi)

∂gi

)T

, I3(gi) = det(gi). (47)

After inserting Eq. (47) into Eq. (46) and performing some transformations we obtain

∇∇∇ ··· Vi = −
1

I3(gi)

(
δiI3(gi)

δt

)
(i = 1, 2), (48)

where we do not imply the summation by repeating subscript. Using the formulae (48) we rewrite
the particle balance equations (44) and the mass balance equations (45) as follows

δi

δt

(
ηi

I3(gi)

)
=

χi

I3(gi)
,

δi

δt

(
ρi

I3(gi)

)
=

χim

I3(gi)
(i = 1, 2). (49)

In what follows we shall primarily discuss the second situation assuming that the number
of the fluid particles is not conserved, while the number of the rigid particles is constant. That
means that we shall use Eqs. (39)–(40). In this case it is necessary to formulate constitutive
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equations concerning the functionsχ1, χ1m, χ2m. The functionsη1 andρ1 are connected by
the relationm η1 = ρ1, wherem is the mass of one fluid particle. Thus we have

mχ1 ≡ −χ, χ1m ≡ −χ, χ2m ≡ χ, χ2 = 0.

The three independent equations from Eqs. (39)–(40) take a form

δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = −χ,

δ2η2

δt
+ η2∇∇∇ ··· V2 = 0,

δ2ρ2

δt
+ ρ2∇∇∇ ··· V2 = χ

or
δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = −χ,

δ2η2

δt
+ η2∇∇∇ ··· V2 = 0,

δ2

δt
ln

ρ2

η2
=

χ

ρ2
. (50)

The fractionρ2/η2 has a sense of the variable mass of one particle-fibre.

4 The laws of dynamics

The fundamental laws in the spatial description must be formulated for open systems, i.e. for
systems, which interchange with the surrounding medium by mass, momentum, kinetic moment,
energy, etc. The momentum of particles for a control volumeV is defined as follows

K1 =

∫

(V)

(ρ1 (x,t) V1 (x,t) + ρ2 (x,t) V2 (x,t)) dV (x) =

∫

(V)

ρ (x,t) Vm (x,t) dV (x) . (51)

The Euler first law of dynamics is the following statement:the rate of change of the
momentum for an arbitrary physical system is equal to the external force acting on the system
plus the external supply of momentum into the system.

The mathematical form of the first law of dynamics is

d

dt

∫

(V)

ρVmdV =

∫

(V)

ρFdV +

∫

(S)

T(n)dS −

∫

(S)

[ρ1 (n ··· V1) V1 + ρ2 (n ··· V2) V2] dS, (52)

where the last integral on the right-hand side is the external supply of momentum into the control
volumeV.

Using the standard arguments one may introduce the stress tensorT and derive the Cauchy
formulae

T(n) = n ··· T ⇒
∫

(S)

T(n)dS =

∫

(V)

∇∇∇ ··· TdV. (53)

Equation (52) takes the form
∫

(V)

[
(ρVm)

···
− ρF +∇∇∇··· (ρ1V1 ⊗ V1 + ρ2V2 ⊗ V2) −∇∇∇ ··· T]

dV = 0.

Taking into account Eq. (40), the local form of Eq. (52) can be obtained

∇∇∇ ··· T + ρF = ρ1
δ1V1

δt
+ ρ2

δ2V2

δt
+ χ1m (V1 − V2) . (54)
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In addition, for the mass density of the external forceF we may write

ρ F = ρ1 F1 + ρ2 F2,

where the force densitiesF1 andF2 may be of different nature. For example, the rigid particles
may be charged.

It is convenient to rewrite Eq. (54) in a form of two equations

∇∇∇ ··· T′ + ρ1F1 + Q = ρ1
δ1V1

δt
+ χ1mV1, ∇∇∇ ··· T′′ + ρ2F2 − Q = ρ2

δ2V2

δt
+ χ2mV2, (55)

whereQ is the force of interaction between the fluid and the solid-liquid components and

T = T′ + T′′ (56)

is postulated. Assuming that
V1 = V2 = Vm ≡ V,

one can obtain the conventional form of Eq. (54)

∇∇∇ ··· T + ρF = ρ
δV
δt

. (57)

The Euler second law of dynamicswas established in 1771 and at present is known as the
following statement:the rate of change of the kinetic moment for an arbitrary physical system is
equal to the external moment acting on the system plus the external supply of the kinetic moment
into the system.

Let us introduce the kinetic moment of the binary medium

K2 =

∫

(V)

ρKKK2dV =

∫

(V)

[
x× (ρ1V1 + ρ2V2) + ρ2J ···ωωω

]
dV, (58)

whereρ2J is the volume density of the inertia tensor of the rigid particles. The underlined term
in Eq. (58) is called the moment of momentum.

In the integral form the second law of dynamics can be written as

d

dt

∫

(V)

ρKKK2dV =

∫

(V)

(ρx× F + ρ2L) dV +

∫

(S)

(
x× T(n) + M (n)

)
dS−

−

∫

(S)

n ··· [ρ1V1 ⊗ (x× V1) + ρ2V2 ⊗ (x× V2 + J ···ωωω)] dS. (59)

In Eqs. (58) and (59)KKK2 and L denote the densities of the kinetic moment and the external
moment, respectively.

Introducing the moment stress tensorM and the Cauchy formulae

M (n) = n ···M ⇒
∫

(S)

M (n)dS =

∫

(V)

∇∇∇ ···MdV (60)



184 P. A. Zhilin. Advanced Problems in Mechanics

and taking into account the first law (54), the local form of the second law can be obtained as
follows

∇∇∇ ···M + T× + ρ2L = ρ2
δ2

δt
(J ···ωωω) + χ2mJ ···ωωω. (61)

J is the mass density of the inertia tensor in the actual state. LetJ0 be the inertia tensor in the
reference state. Then we have

J(x, t) = P(x, t) ··· J0 ··· PT (x, t). (62)

Let us assume that in the reference state all particles-fibers are transversally isotropic and have
the same inertia properties. Thus, we may accept

J0 = λ e⊗ e+ µ (E − e⊗ e), (63)

where the constantsλ andµ are the moments of inertia of the rigid particles and the unit vector
edetermines the axis of isotropy of the particles in the reference frame.

The reference direction of the vectore is arbitrary and may be selected to be the same in
all points of the reference frame including points which are not occupied by particles-fibres at
t = 0. Then the reference distribution of the rigid particles can be given by

J(x0, 0) = P0(x0) ··· J0 ··· PT
0 (x0), P0(x0) ≡ P(x0, 0), (64)

where the rotation tensorP0(x0) determines the initial orientation of the rigid particles. Let us
note that for the considered manufacturing process the distribution of the initial orientations is a
random function. Therefore, after solving of a deterministic problem for a given distribution of
the tensorP0(x0) one should solve the problem of the statistical averaging of the results.

If we use Eq. (63) the relation (62) may be rewritten as

J(x, t) = µ E + (λ − µ) e′ ⊗ e′, e′(x, t) ≡ P(x, t) ··· e. (65)

Let us discuss the behavior of the volume density of the inertia tensorρ2(x, t)J(x, t) within
the flow process. If we take into account the phenomenon of sticking of the fluid particles to
the fibers then this tensor is varying. There are two reasons leading to the change of the tensor
ρ2(x, t)J(x, t). The main reason is the variation of the mass densityρ2(x, t). However, from
the theoretical point of view it is possible to assume that the mass densityJ(x, t) of the inertia
tensor is changing too, including both the symmetry properties and the moments of inertia. It
seems to be obvious that this second factor is not very important for the considered technolog-
ical processes. In what follows we shall assume that the volume density of the inertia tensor
ρ2(x, t)J(x, t) may change only due to the changing of the mass densityρ2(x, t). In such a
case with respect to Eqs. (62) and (30) we have

δ2

δt
J(x, t) = ωωω(x, t)× J(x, t) − J(x, t)×ωωω(x, t). (66)

Another approach is discussed by Eringen [18, 19], who proposed instead of Eq. (66) the fol-
lowing equation

δ2

δt
J(x, t) = ωωω(x, t)× J(x, t) − J(x, t)×ωωω(x, t) + f(x, t),
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where the functionf(x, t) accounts for the sticking of the fluid particles to the rigid particles.
This function must be defined by a constitutive equation. In this work we will prefer Eq. (66)
which is broadly used in dynamics of rigid body and, in essence, was established by Euler. Let
us note that it is possible to take into account the phenomenon of sticking even by use of Eq.
(66).

5 Energy balance equation

Each of the fundamental laws introduces a new concept. The first law of dynamics introduces the
concept of forces, the second law treats the moments, which are, in general case, not determined
through the concept of forces. The third fundamental law in mechanics is the energy balance
equation. Within the framework of the continuum mechanics this law plays the most important
role, but its formulation is much more difficult in comparison with the first and the second law.
The energy balance equation introduces a lot of new concepts. The mostly important of them
is the concept of the internal energy. The general formulation of the energy balance equation
includes the new concept of the total energy. However, the total energy can be conveniently
represented as a sum of the kinetic energy, which has been already defined, and the internal
energy, which absorbs all the new concepts contained in the concept of the total energy. One
of the principal assumptions within continuum mechanics is the statement that the total energy
of a system is an additive function of mass and according to the Radon-Nikodym theorem from
the theory of sets, e.g. [23], can be presented as an integral over the mass, where the mass
is considered to be a measure. The kinetic energy is, according to its definition, an additive
function of mass. Therefore, the additivity of the total energy leads to the additivity of the
internal energy. Generally speaking, the additivity of the internal energy is provided only for
absolutely continuous systems. However, the known physical world is discrete. Therefore, the
assumption about the additivity of the internal energy is a strong restriction. The attempts to relax
this restriction are usually based on the concepts of the surface energy or the binding energy. In
this work we will follow the traditional assumption about the additivity of the internal energy. In
this case the total energy of the binary system can be considered by

E =

∫

(V)

[
1

2
(ρ1V1 ··· V1 + ρ2V2 ··· V2) +

1

2
ρ2ωωω ··· J ···ωωω + ρ1U1 + ρ2U2 + ρU12

]
dV,

whereU1 andU2 are the mass densities of the internal energy of the fluid and the solid-fluid
constituents, respectively.U12 is the energy of the interaction between the constituents of the
binary mixture.

The energy balance equation or the first law of thermodynamicsis the following state-
ment: the rate of change of the total energy of any physical system is equal to the power of
external actions on the system plus the rate of the energy supply of the “non-mechanical” na-
ture, usually in the form of heat.It is difficult to give a general and strict definition of the concept
for the energy of the “non-mechanical” nature. Therefore let us restrict ourself by an ambigu-
ous statement that the energy of the “non-mechanical” nature is that part of the energy which is
supplied into the system not through the power of external actions.
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The energy balance equation may be formulated as follows

dE

dt
=

∫

(V)

[ρ1F1 ··· V1 + ρ2F2 ··· V2 + ρ2L ···ωωω + ρ q] dV+

+

∫

(S)

(
T′(n) ··· V1 + T′′(n) ··· V2 + M (n) ···ωωω + h(n)

)
dS −

∫

(S)

n ···
[
ρ1V1

(
1

2
V1 ··· V1 + U1

)
+

+ ρ2V2

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω + U2

)
+ ρVm U12

]
dS. (67)

In Eq. (67) the decomposition of the total vector of tractionsT(n) is used

T(n) = T′(n) + T′′(n) = n ··· T′ + n ··· T′′.

q is the rate of production of the energy at a pointx of the reference frame andh(n) is the rate
of energy supply through the surfaceS. The last one can be written using the Stokes rule

h(n) = n · h, (68)

whereh is the vector of the energy flux, which contains all kinds of energy which are not included
in the power of external forces and moments. Let us note that in many works the vector(−h) is
used instead of the vectorh.

Taking into account Eqs. (40), (42), (55) and (61) the energy balance equation (67) may be
written down in the local form as

ρ1m
δ1U1

δt
+ ρ2m

δ2U2

δt
+ ρm

δmU12

δt
=

= T′T ··· ··· (∇∇∇V1 + E×ωωω) + T′′T ··· ··· (∇∇∇V2 + E×ωωω) + MT ··· ···∇∇∇ωωω + Q ··· (V2 − V1)+

+∇∇∇ ··· h + ρmq + χ1m

(
1

2
V1 ··· V1 − U1

)
+ χ2m

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω − U2

)
. (69)

The right-hand side of Eq. (69) contains the power of forces and moments. A part of this power
serves for the change of the internal energy. The remaining part of the power partly conserves
within the body in the form of heat and partly radiates into the external medium. In order to
separate these parts let us introduce the following decompositions

T′ = T′e + T′f, T′′ = T′′e + T′′f , M = Me + Mf, Q = Qe + Qf, (70)

where the subscript"e" denotes the part which does not depend on the velocities and the subscript
"f" denotes the remaining part. In what follows the quantities with subscript"e" will be termed
elastic stresses. These elastic stresses always affect the internal energy. The quantities with
the subscript"f" may have an influence on the internal energy but only by means of additional
parameters like entropy. These parameters will be introduced later.
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Substituting Eqs. (70) into Eq. (69) one may obtain

ρ1
δ1U1

δt
+ ρ2

δ2U2

δt
+ ρ

δmU12

δt
=

= T′Te ··· ··· (∇∇∇V1 + E×ωωω) + T′′Te ··· ··· (∇∇∇V2 + E×ωωω) + MT
e ··· ···∇∇∇ωωω + Qe ··· (V2 − V1)+

+ T′Tf ··· ··· (∇∇∇V1 + E×ωωω) + T′′Tf ··· ··· (∇∇∇V2 + E×ωωω) + MT
f ··· ···∇∇∇ωωω + Qf ··· (V2 − V1)+

+∇∇∇ ··· h + ρmq + χ1m

(
1

2
V1 ··· V1 − U1

)
+ χ2m

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω − U2

)
. (71)

Such a form of the energy balance equation is useless. Below we shall transform Eq. (71) in
order to obtain the so-called reduced energy balance equation. The idea of such a transformation
was discussed in [44].

6 Basic constitutive assumptions

Let us assume that the pressure is moderate, i.e. we will not consider neither the super high nor
the super low pressure. That means, that we will exclude the phase transitions of the solid–solid
and the liquid–gas types. However, we have to take into account the solid–liquid type phase
transitions. In such a case we can assume

T′e = −p1(x, t)E, T′′e = − p2(x, t)E, Me = 0, Qe = 0. (72)

From these assumptions it follows that the rigid particles are not able to form the solid body
without strong external loads. Otherwise, we have to take into account the deviatoric part of the
stress tensor. Thus, within these assumptions the constituent of particles-fibers behaves like a
liquid.

From the intuitive point of view the first three assumptions in Eqs. (72) seem to be quite
reasonable. The last assumption in Eqs. (72) is related to the elastic interaction between the fluid
and the solid-liquid constituents. Let us note that Eq. (69) includes the quantityQ = Qe + Qf.
The forceQe characterizes the elastic interaction and should be determined in such a way that
the following equation

Qe ··· (V1 − V2) =
dP

dt
, (73)

is satisfied, i.e. the elastic force should have a potential. The elastic interaction is present in
the nature of the considered phenomenon. Indeed, a moving force field connected with moving
particles should be treated using Eq. of the type (73). In the case of a binary medium the right
hand side of Eq. (73) should be expressed in terms of two different material derivatives with
respect to the velocitiesV1 andV2. This problem requires additional investigation. In this paper
we will neglect the elastic interaction assumingQe = 0.

With assumptions (72) and taking into account Eqs. (50) the energy balance equation (71)
may be rewritten as follows

ρ1
δ1U1

δt
+ ρ2

δ2U2

δt
+ ρ

δmU12

δt
=

p1

ρ1

δ1ρ1

δt
+

p2

ρ2

δ2ρ2

δt
+ ρ2Ψ

δ2z

δt
+∇∇∇ ··· h + ρq+

+ T′Tf ··· ··· (∇∇∇V1 + E×ωωω) + T′′Tf ··· ··· (∇∇∇V2 + E×ωωω) + MT
f ··· ···∇∇∇ωωω + Qf ··· (V2 − V1) , (74)
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where

z ≡ ln
ρ2η0

2

ρ0
2η2

, Ψ ≡
(

1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω −

p2

ρ2
− U2

)
−

(
1

2
V1 ··· V1 −

p1

ρ1
− U1

)
(75)

andη0
2 andρ0

2 are the reference density and the mass density of particles-fibers, respectively.
In addition, we have to introduce constitutive assumptions with respect to the forces and the

moments of viscous friction. Let us use the conventional notations

d =
1

2

(∇∇∇V1 +∇∇∇VT
1

)
, D =

1

2

(
∇∇∇V1 +∇∇∇VT

1 −
2

3
(∇∇∇ ··· V1)E

)
.

For the tensorT′f let us postulate the following constitutive equation

T′f = 2µµµ ··· ···D + t′ × E, t′ = η2µµµ1 ···
(

ωωω −
1

2
∇∇∇× V1

)
. (76)

Here the vectort′ characterizes the viscous friction between the solid particles and the fluid. In
the first Eq. in (76) the viscosity forth rank tensorµµµ must satisfy the following restrictions

a ··· ···µµµ ··· ···a≥ 0, a ··· ···µµµ = µµµ ··· ···a, c ··· ···µµµ = 0, E ··· ···µµµ = 0, ∀ a, c with c = −cT , (77)

wherea andc are second rank tensors. Furthermore, if the particle densityη2 vanishes, then the
tensorµµµ must be isotropic. In the majority of works on suspensions the tensorµµµ is supposed
to be a transversely isotropic function ofe′ andD, where the vectore′ is defined by Eq. (65).
Furthermore, the traditional approach assumes that the difference between the suspension and
the ordinary fluid lies in the structure of the tensorµµµ (see the Introduction to this paper). In this
work we do not deny the possibility that the tensorµµµ may depend one′ andD. However, such
a dependence is not crucial in our approach. From the physical point of view it seems to be
reasonable to assume the tensorµµµ to be isotropic.

The viscosity second rank tensorµµµ1 in Eq. (76) must satisfy the restrictions

a ···µµµ1 ··· a≥ 0, a ···µµµ1 = µµµ1 ··· a, ∀ a with |a| 6= 0, (78)

wherea is a vector. Besides, if the particle densityη2 vanishes, then the vectort′ must be zero.
We assume that the tensorµµµ1 is transversely isotropic

µµµ1 = µ1
1e′ ⊗ e′ + µ2

1 (E − e′ ⊗ e′) , µ1
1 ≥ 0, µ2

1 ≥ 0, (79)

where the vectore′ is defined by Eq. (65).
The constitutive equation for the viscous stresses in the solid-liquid constituent may be writ-

ten as

T′′f = t′′ × E, t′′ = η2µµµ2 ···
(

ωωω −
1

2
∇∇∇× V2

)
, (80)

where the second rank tensorµµµ2 has the same form as in Eq. (79). The vectort′′ describes the
viscous friction between the solid particles. It is clear that the vectort′′ must vanish ifη2 = 0.

The constitutive equation for the viscous moment stress tensor may be accepted in a simple
form

Mf = m× E, m = − η2µ3 (∇×ω∇×ω∇×ω) , µ3 ≥ 0. (81)
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Finally, we assume the constitutive equation for the forceQf in the following form

Qf = 2η2µµµ12···(V2 − V1) , µµµ12 = µ1
12e′⊗e′+µ2

12 (E − e′ ⊗ e′) , µ1
12 ≥ 0, µ2

12 ≥ 0. (82)

The substitution of Eqs. (76)–(82) into Eq. (74) leads to the following form of the energy balance
equation

ρ1
δ1U1

δt
+ ρ2

δ2U2

δt
+ ρ

δmU12

δt
=

p1

ρ1

δ1ρ1

δt
+

p2

ρ2

δ2ρ2

δt
+ ρ2Ψ

δ2z

δt
+

+∇∇∇ ··· h + ρq + 2D ··· ···µµµ ··· ···D + 2η2 (V2 − V1) ···µµµ12 ··· (V2 − V1)+

+ η2

2∑

i=1

(
ωωω −

1

2
∇∇∇× Vi

)
···µµµi ···

(
ωωω −

1

2
∇∇∇× Vi

)
+ η2µ3 |∇∇∇×ωωω|

2
. (83)

7 The heat conduction equation.
The second law of thermodynamics

In order to state the so-called reduced equation of the energy balance we need to define the con-
cepts of temperature, entropy and chemical potential. As a rule, all these concepts are supposed
to be well-known [38]. However, in fact there are no satisfactory definitions for them in contin-
uum mechanics. The problem is that it is impossible to prove that the temperature introduced in
thermodynamics or in statistical physics coincides with the temperature in continuum mechanics.
The same may be said with respect to the entropy and chemical potential. In what follows we
will use the approach discussed in [44]. Let us introduce the new variablesϑ1, ϑ2, H1, andH2

such that

∇∇∇ ··· h + ρq + 2D ··· ···µµµ ··· ···D + 2η2 (V2 − V1) ···µµµ12 ··· (V2 − V1) + η2µ3 |∇∇∇×ωωω|
2
+

η2

2∑

i=1

(
ωωω −

1

2
∇∇∇× Vi

)
···µµµi ···

(
ωωω −

1

2
∇∇∇× Vi

)
= ρ1ϑ1

δ1H1

δt
+ ρ2ϑ2

δ2H2

δt
, (84)

where the parametersϑ1 andϑ2 will be called temperatures of liquid and solid-liquid species,
respectively, and the parametersH1 andH2 will be called entropies of the species. The functions
ϑ1 andϑ2 are supposed to be measurable by means some experimental procedure. The functions
H1 andH2 must be defined by means of constitutive equations in such a manner that the tem-
peratures found theoretically coincide with the temperatures found experimentally. From this it
follows that the entropy itself has not the meaning of any objective (measurable) quantity. If we
change the meaning of temperature, then the meaning of the entropy will be changed as well.
Thus we see that Eq. (84) is the true equality rather then additional assumption. In some sense
one may say that the right-hand side of Eq. (84) is the notation for the left-hand side of Eq. (84).
Equation (84) is termed the heat conduction equation.

Let us rewrite Eq. (84) in an equivalent form using decomposition

h = h′ + h′′.
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In such a case we have

∇∇∇ ··· h′ + ρ1q1 + Q + 2D ··· ···µµµ ··· ···D + η2 (V2 − V1) ···µµµ12 ··· (V2 − V1)+

+ η2

(
ωωω −

1

2
∇∇∇× V1

)
···µµµ1 ···

(
ωωω −

1

2
∇∇∇× V1

)
= ρ1ϑ1

δ1H1

δt
,

∇∇∇ ··· h′′ + ρ2q2 − Q + η2 (V2 − V1) ···µµµ12 ··· (V2 − V1)+

+ η2

(
ωωω −

1

2
∇∇∇× V2

)
···µµµ2 ···

(
ωωω −

1

2
∇∇∇× V2

)
+ η2µ3 |∇∇∇×ωωω|

2
= ρ2ϑ2

δ2H2

δt
, (85)

where the quantityQ is termed as the heat exchange between the liquid and the solid-liquid
constituent. Eq. (84) follows from Eqs. (85). The equivalence of Eq. (84) and Eqs. (85) is
determined by the presence of the undefined quantityQ. With the separation of Eq. (84) into two
equations Eq. (85) we can state the second law of thermodynamics in a form of two inequalities
[42]. The amount of the heat accumulated in each the constituent is determined by the heat
exchangeQ. For the heat fluxes we apply the Fourier-Stokes law

h′ = κ1∇∇∇ϑ1, h′′ = κ2∇∇∇ϑ2, Q = −κ (ϑ1 − ϑ2) , κ1 ≥ 0, κ2 ≥ 0, κ ≥ 0, (86)

whereκ1, κ2 andκ are the heat conductivities. The latter inequalities do not contradict the
second law of thermodynamics which will can be formulated as a set of two inequalities of the
Clausius-Duhem type [44]

d

dt

∫

(V)

ρ1 H1dV −

∫

(V)

[
ρ1q1

ϑ1
+

Q

ϑ2

]
dV −

∫

(S)

n ···
[

h′

ϑ1
− ρ1V1H1

]
dS ≥ 0, (87)

d

dt

∫

(V)

ρ2 H2dV −

∫

(V)

[
ρ2q2

ϑ2
−

Q

ϑ1

]
dV −

∫

(S)

n ···
[

h′′

ϑ2
− ρ2V2H2

]
dS ≥ 0. (88)

In the local form the inequalities (87)–(88) may be written as follows

ρ1
δ1H1

δt
−

1

ϑ1
(∇∇∇ ··· h′ + ρ1q1 + Q) + Q

(
1

ϑ1
−

1

ϑ2

)
− χH1 +

1

ϑ2
1

h′ ··· ∇∇∇ϑ1 ≥ 0, (89)

ρ2
δ2H2

δt
−

1

ϑ2
(∇∇∇ ··· h′′ + ρ2q2 − Q) + Q

(
1

ϑ1
−

1

ϑ2

)
+ χH2 +

1

ϑ2
2

h′′ ··· ∇∇∇ϑ2 ≥ 0. (90)

Making use of Eqs. (85) we obtain

2D······µµµ······D+η2 (V2 − V1)···µµµ12 ···(V2 − V1)+η2

(
ωωω −

1

2
∇∇∇× V1

)
···µµµ1 ···

(
ωωω −

1

2
∇∇∇× V1

)
+

+ Q

(
1

ϑ1
−

1

ϑ2

)
− χH1 +

1

ϑ2
1

h′ ··· ∇∇∇ϑ1 ≥ 0, (91)
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η2 (V2 − V1) ···µµµ12 ··· (V2 − V1) + η2

(
ωωω −

1

2
∇∇∇× V2

)
···µµµ2 ···

(
ωωω −

1

2
∇∇∇× V2

)
+

+ η2µ3 |∇∇∇×ωωω|
2

+ Q

(
1

ϑ1
−

1

ϑ2

)
+ χH2 +

1

ϑ2
2

h′′ ··· ∇∇∇ϑ2 ≥ 0. (92)

Inequalities (91) and (92) are necessary restrictions which must be valid always and for all pro-
cesses. If we neglect the sticking of the fluid particles to the solid particles, i.e. assumeχ = 0,
then the above introduced restrictions for the viscosities (77), (78) and (81) as well as for the heat
conductivities (86), are sufficient conditions to satisfy the inequalities (91) and (92). Ifχ 6= 0,
then the inequalities (91) and (92) contain the termsχH1 andχH2. From the formal point of
view it is not obvious that these inequalities are always satisfied. Nevertheless, we guess that
even in this case the inequalities (91) and (92) should be valid without essential restrictions.

8 The reduced energy balance equation.
The Cauchy–Green relations

Using Eq. (84) one may rewrite Eq. (83) as follows

ρ1
δ1U1

δt
+ρ2

δ2U2

δt
+ρ

δmU12

δt
=

p1

ρ1

δ1ρ1

δt
+

p2

ρ2

δ2ρ2

δt
+ρ1ϑ1

δ1H1

δt
+ρ2ϑ2

δ2H2

δt
+ρ2Ψ

δ2z

δt
.

(93)
The equation of the energy balance written in the form of Eq. (93) is termed the reduced energy
balance equation. From Eq. (93) it is obvious how to define the internal energiesU1, U2 and
U12. The corresponding constitutive equations may be assumed in the simplest form

U1 = U1(ρ1, H1), U2 = U2(ρ2, H2, z), U12 = const. (94)

After the substituting Eq. (94) into Eq. (93) one can derive the Cauchy-Green relations

p1 = ρ2
1

∂U1

∂ρ1
, p2 = ρ2

2

∂U2

∂ρ2
, ϑ1 =

∂U1

∂H1
, ϑ2 =

∂U2

∂H2
, Ψ =

∂U2

∂z
. (95)

Instead of internal energies let us introduce the free energies

F1(ρ1, ϑ1) = U1 − ϑ1H1, F2(ρ2, ϑ2, z) = U2 − ϑ2H2. (96)

The reduced energy balance equation (93) takes now the form

ρ1
δ1F1

δt
+ ρ2

δ2F2

δt
=

p1

ρ1

δ1ρ1

δt
+

p2

ρ2

δ2ρ2

δt
− ρ1H1

δ1ϑ1

δt
− ρ2H2

δ2ϑ2

δt
+ ρ2Ψ

δ2z

δt
. (97)

The Cauchy-Green relations (95) can be transformed as follows

p1 = ρ2
1

∂F1

∂ρ1
, p2 = ρ2

2

∂F2

∂ρ2
, H1 = −

∂F1

∂ϑ1
, H2 = −

∂F2

∂ϑ2
Ψ =

∂F2

∂z
. (98)

From the last equation in (98) we may conclude that the functionΨ plays the role of the chemical
potential. In addition, from the last equations in (95) and (98) it is obvious that the entropyH2

does not depend on the variablez. In fact, we have

Ψ =
∂F2

∂z
=

∂U2

∂z
⇒ ∂ϑ2H2

∂z
= 0 ⇒ ∂H2

∂z
= 0.
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Let us note that the representation of the functionΨ as the derivative of the internal energy is
in fact a restriction imposed on the dependence of the internal energy on the variablez. Indeed,
accordingly to Eq. (75) and Eq. (95) we have

∂U2

∂z
=

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω − ρ2

∂U2

∂ρ2
− U2

)
−

(
1

2
V1 ··· V1 − ρ1

∂U1

∂ρ1
− U1

)
. (99)

Equation (99) is the partial differential equation for the internal energy. It may be rewritten in
the following equivalent form

∂U2

∂z
+

∂U2

∂x
=

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω − U2

)
−

(
1

2
V1 ··· V1 − ρ1

∂U1

∂ρ1
− U1

)
, (100)

wherex ≡ ln(ρ2/ρ0
2). If we introduce the new variables

α =
z + x

2
= ln


ρ2

ρ0
2

√
η0

2

η2


 , β =

z − x

2
= ln

√
η0

2

η2
, z = ln

ρ2η0
2

ρ0
2η2

, x = ln
ρ2

ρ0
2

, (101)

then instead of Eq. (100) we obtain

∂U2

∂α
=

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω − U2

)
−

(
1

2
V1 ··· V1 − ρ1

∂U1

∂ρ1
− U1

)
, (102)

where the internal energyU2 must be considered as a function ofα, β, H2. Furthermore, this
function must satisfy the condition (102). Now the Cauchy-Green relations (95) take the form

p1 = ρ2
1

∂U1

∂ρ1
, p2 = ρ2

∂U2

∂α
, ϑ1 =

∂U1

∂H1
, ϑ2 =

∂U2

∂H2
, Ψ =

1

2

∂U2

∂α
+

1

2

∂U2

∂β
. (103)

In terms of the free energy the Cauchy-Green relations may be rewritten as

p1 = ρ2
1

∂F1

∂ρ1
, p2 = ρ2

∂F2

∂α
, H1 = −

∂F1

∂ϑ1
, H2 = −

∂F2

∂ϑ2
Ψ =

1

2

∂F2

∂α
+

1

2

∂F2

∂β
. (104)

Let us recall that the pressurep2 characterizes the interaction between the fibers. For suspensions
under consideration we can assumep2 = 0. In this case we can observe from Eq. (104) thatU2

andF2 do not depend onα. Consequently, the internal energyU2 can be found from Eq. (102)
as follows

U2 =

(
1

2
V2 ··· V2 +

1

2
ωωω ··· J ···ωωω

)
−

(
1

2
V1 ··· V1 − ρ1

∂U1

∂ρ1
− U1

)
. (105)

Furthermore, instead of Eqs. (104) we have

p1 = ρ2
1

∂F1

∂ρ1
, p2 = 0, H1 = −

∂F1

∂ϑ1
, H2 = −

∂F2

∂ϑ2
Ψ =

1

2

∂F2

∂β
. (106)

Here the functionΨ has the exact meaning of the chemical potential. Let us recall that the
chemical potential in physics is defined as the derivative of the free energy with respect to the
number of the particles in the system under consideration. However, from Eqs. (75) and (102)
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we see that the chemical potentialΨ is negligibly small. Therefore, the effect of sticking of the
fluid particles to the fibres can be ignored. Of course, such a conclusion is valid only within
the assumption that the solid particles by itself cannot form a solid body. That means that the
distances between the fibres are too large so that the inter-particle forces may be ignored. Thus,
we can assume the following representations

F1 = F1(ρ1, ϑ1), F2 = F2(ϑ2). (107)

Let us introduce a new variable

ζ =
ρ0

1

ρ1
− b, b ≡ ρ0

1

ρ∗1
' 0.7÷ 0.9; ζ = 0 ⇒ ρ1 = ρ∗1, (108)

whereb is an empirical constant,ρ∗1 is the upper limit of the mass density of the first constituent
andρ0

1 is the corresponding equilibrium mass density atp = 0 andϑ1 = 0. Of course, we
do not take into account the quantum effects. That means that we consider the case when the
temperature is far from the absolute zero. With the variableζ Eq. (106) can be written as follows

p1 = −
∂ρ0

1F1

∂ζ
, p2 = 0, H1 = −

∂F1

∂ϑ1
, H2 = −

∂F2

∂ϑ2
, Ψ = 0. (109)

The parameterρ0
1 will be discussed in more details in the next section. Finally, let us emphasize

that from our conclusion it does not follow that the functionχ in Eqs. (50) may be ignored.

9 Constitutive equation for the pressure

The constitutive equation for the pressure inside the fluid must be formulated based on known
experimental facts. The commonly used approach in models of the suspension flow by the filling
is the application of the incompressibility condition, e.g. [4, 3, 7, 10, 15, 39], among others. Fur-
thermore, as far we know, the stage of the solidification was not examined in theoretical works.
If we desire to consider the solidification, then we should modify the model of an incompressible
fluid. The starting point is the constitutive equation for the pressure proposed in [44]

p = p0
n

m − n

(m

n

) n
m−n

[(
1 − b

ζ

)m

−

(
1 − b

ζ

)n]
+

cϑ1

ζk
, 1 < k < n < m, p0 > 0,

(110)
wherep ≡ p1 is the pressure in the species 1 and the constant parametersp0, m, n, k, c, b

should be identified experimentally. From the physical point of view it is clear that the constants
m, n, k must be odd integers.

Let us discuss the main features of the constitutive equation (110). First of all if the temper-
atureϑ1 = 0, then for the pressurep = 0 we haveζ = 1 − b or ρ1 = ρ0

1, see Fig. 3. Thus, the
mass densityρ0

1 corresponds to the stable equilibrium state of the material in the solid state. The
meaning of the constantp0 in Eq. (110) follows from the expression

pmin = − p0, ϑ1 = 0.

Thus,p0 is the tensile strength of the material in the solid state at the low temperature. It is
important to note that the material under consideration has a finite tensile strength. If the value
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0

ζ

p

1 − b

−p0

ϑ1 = 0

Figure 3. Qualitative variation of the pressure in the solid phase

of the pressure is less than (− p0), then the material fails. If the value is higher than (− p0), then
the material may exist only in the solid state.

Let us examine the case when 0 < ϑ1 < ϑ∗, where the temperature ϑ∗ will be introduced
later. The pressure diagram corresponding to Eq. (110) is shown in Fig. 4. Here we have
two equilibrium states with the normalized densities ζ1 and ζ2 denoted by the points A and B,
respectively, (1 − b < ζ1 < ζ2). ζ1 and ζ2 can be calculated as the roots of the following
equation

p0

n

m − n

(m

n

) n
m−n

[(
1 − b

ζ

)m

−

(
1 − b

ζ

)n]
+

cϑ1

ζk
= 0, 0 < ϑ1 < ϑ∗. (111)

The first root ζ1 corresponds to a stable equilibrium state of the material in the solid phase. The
second one ζ2 corresponds to an unstable equilibrium state of the material. The first zone in
Fig. 4 corresponds to the stable solid phase of the material. The pressure within this zone is
determined by the constitutive equation (110) and the dependence of the pressure on the den-
sity should be verified experimentally. The second zone in Fig. 4 corresponds to the so-called
metastable state of the material. Within this zone the material behavior is determined by the
equations of motion rather than by the constitutive equation. Let us underline that within this
zone there is no static solution or, what is the same, there is an infinite number of static solutions.
Furthermore, within this zone we have a mixture of two phase states of the material: the liquid
and the solid one. The third zone in Fig. 4 corresponds to the stable liquid phase of the material.
In this phase the material can exist only for the pressure lying within the interval 0 < p < p 1,
where p1 is marked in Fig. 4. Let us assume that the diagram presented in Fig. 4 corresponds to
the temperature of polymerization ϑp at the pressure p1. Let the temperature ϑp be constant and
the pressure p is less than p1. In such a case we have three equilibrium states denoted by points
C, D and E in Fig. 4. Two of these states (points C, E) are stable and the equilibrium state in D
is unstable. What state will be realized depends on the initial conditions.
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Figure 4. Qualitative variation of the pressure for 0 < ϑ1 < ϑ∗

If the temperature ϑ1 increases from 0 up to a value ϑ1 < ϑ∗, then the tensile strength pϑ of
the material decreases to

pϑ = −
p0

k

n

m − n

(m

n

) n
m−n

[
(m − k)

(
1 − b

ζs(ϑ1)

)m

− (n − k)

(
1 − b

ζs(ϑ1)

)n]
, (112)

where ζs(ϑ1) is the least root of the following equation

p0

n

m − n

(m

n

) n
m−n

[
m

(
1 − b

ζs

)m

− n

(
1 − b

ζs

)n]
+ k

cϑ1

ζk
s

= 0, 0 < ϑ1 < ϑ∗. (113)

The tensile strength pϑ of the material should be found experimentally. The polymerization of
the suspended fluid is possible only if ϑ1 ≤ ϑ∗.

Now let us determine the critical temperature ϑ∗. The case ϑ = ϑ∗ is presented in Fig. 5.
Here we have only one equilibrium state at the zero pressure. The material has three different
liquid phases. If the pressure p lyes within the range 0 < p < p1, then the material has two
different liquid states. The first and the third zone in Fig. 5 correspond to the two different stable
liquid phases. The second, intermediate zone characterizes an unstable state which corresponds
to a mixture of two different liquid phases. If the pressure p is higher than p 1, then we have
only one liquid phase. In order to find the density ζ ∗ corresponding to this state and the critical
temperature ϑ∗ we have to solve the following system of equations

p0

n

m − n

(m

n

) n
m−n

[(
1 − b

ζ∗

)m

−

(
1 − b

ζ∗

)n]
+

cϑ∗
ζk∗

= 0,

p0

n

m − n

(m

n

) n
m−n

[
m

(
1 − b

ζ∗

)m

− n

(
1 − b

ζ∗

)n]
+ k

cϑ∗
ζk∗

= 0. (114)
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Figure 5. Qualitative variation of the pressure for ϑ = ϑ∗

The solution of this system may be found as

ζ∗ = (1 − b)

(
m − k

n − k

) 1
m−n

,
cϑ∗

(1 − b)k
= p0

n

m − k

(m

n

) n
m−n

(
n − k

m − k

) n−k
m−n

. (115)

Equations (115) can be used in order to find the constants m, n, k since the quantities ζ ∗ and
ϑ∗ are experimentally measurable. Let us emphasize that if the temperature ϑ 1 is higher than ϑ∗,
then according to the constitutive equation (110) the solidification of the material is impossible.
The critical temperature ϑ∗ may be termed as the melting temperature.

Figure 6 shows the pressure dependence for the case ϑ∗ < ϑ1 < ϑ∗∗. Within this temperature
range the material may exist in two liquid phase states. If the temperature ϑ 1 is higher than ϑ∗∗,
then the material has only one liquid phase. Let us recall that we do not consider here the
gaseous phase of the material. The difference between gas and liquid is that for gas the attractive
force decreases more slowly with increasing of ζ. The temperature ϑ ∗∗ may be found from the
equations

dp

dζ
= 0,

d2p

dζ2
= 0.

By use of Eqs. (109) and (110) we obtain the expression of the free energy

ρ0
1 F1 = F0

[
−

ζ

m − 1

(
1 − b

ζ

)m

+
ζ

n − 1

(
1 − b

ζ

)n]
−

1

k − 1

cϑ1

ζk−1
+ ψ(ϑ1), (116)

where the function ψ(ϑ1) must be specified for the given material. One may find the function
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Figure 6. Qualitative variation of the pressure for ϑ∗ < ϑ1 < ϑ∗∗

ψ(ϑ1) from the following equation

−
∂ψ(ϑ1)

∂ϑ1

= cε ln
ϑ1

ϑ0

,

where cε is the heat capacity at constant strains.

10 The final system of equations

The basic unknowns of the considered problem are ρ1 and η2, ρ2. For these functions we have
the set of equations (50)

δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = −χ,

δ2η2

δt
+ η2∇∇∇ ··· V2 = 0,

δ2

δt
ln

ρ2

η2

=
χ

ρ2

, (117)

where the function χ should be specified. In the simplest case it is possible to assume that χ = 0.
The equations of motion of the liquid constituent are given by the first equation from

Eqs. (55). Taking into account the constitutive equation (76) we obtain

−∇∇∇p1 + 2∇∇∇ ··· (µµµ ··· ···D) +∇∇∇×
[
η2µµµ1 ···

(
ωωω −

1

2
∇∇∇× V1

)]
+

+ η2µµµ12 ··· (V2 − V1) + ρ1F1 = ρ1

δ1V1

δt
− χV1. (118)
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The equations of the translation motion of the solid-liquid constituent take the form

−∇∇∇p2+∇∇∇×
[
η2µµµ2 ···

(
ωωω −

1

2
∇∇∇× V2

)]
+η2µµµ12···(V1 − V2)+ρ2F2 = ρ2

δ2V2

δt
+χV2, (119)

where the partial pressurep2 may be assumed to be zero, or may be defined by a constitutive
equation like Eq. (110).

Equation (61) for the spinor motion of fibres can be written as follows

− η2µ3∇∇∇× (∇∇∇×ωωω) − 2η2µµµ2 ···
(

ωωω −
1

2
∇∇∇× V2

)
− 2η2µµµ1 ···

(
ωωω −

1

2
∇∇∇× V1

)
+ ρ2L =

= ρ2
δ2

δt
(J ···ωωω) + χ(J ···ωωω). (120)

To the above equations (117)–(120) we have to add the heat conduction equations (85) together
with constitutive equations (86) in which it is possible to assume thatκ2 = 0.

In order to obtain the final statement of the basic equations we have to determine the volume
forcesρ1F1, ρ2F2 and the volume momentρ2L . Partly they are determined by the external
fields, usually it is the gravity field, which does not create the external momentρ2L . Besides,
the volume forces and moments may arise due to the boundary walls. Let us suppose, that the
boundary of the mold cavityV is bounded by the surfaceS. Let this surface consists of two parts
S = S0∪S1, whereS0 is the rigid wall andS1 is an inlet of the cavity through which the mixture
flows into the cavityV . Let n be a unit normal vector toS, directed towards the domainV. Let s
be a distance along the normaln. Let us assume that the influence of the wall may be described
in terms of the external force field which must be considered by means of the volume forces. Let
us specify the volume forces as follows

L = 0, F1 = F2 = g + F0

[(s

l

)−p

−
(s

l

)−q
]

n, p > q > 0, s ≥ 0, (121)

where l > 0 is a very small constant having the dimension of length. In general, the wall
creates the moment acting on the rigid particles. But we shall neglect by this moment. The
mixture in fluid state is inserted into the cavity through the inletS1 and occupies some domain
V∗ which is changing in time. The boundary ofV∗ is the surfaceS∗ that consists of three parts
S∗ = S1 ∪ S∗0 ∪ Sf, whereS∗0 is those part ofS0 which is in contact with the mixture andSf is
the free surface of the mixture. For all these surfaces we have to state the boundary conditions
which may be prescribed in the conventional form for the velocities and the pressure.

11 Discussion

The aim of this paper was to derive the governing equations describing the flow of the fiber
suspension within the framework of the micro-polar model of a binary medium. In a forthcoming
paper the numerical solution of the proposed equation as well as some illustrating examples will
be presented.

As a discussion let us compare our approach with the existing theories. For this purpose we
will consider simplifying assumptions as it made within the existing theories. Let us proceed by
several steps.



A Micro-Polar Theory for Binary Media 199

The first step is the simplest one. Let us assume that

ϑ1 = ϑ2 = const, χ = 0. (122)

In this case from Eqs. (117) follows

δ1ρ1

δt
+ ρ1∇∇∇ ··· V1 = 0,

δ2ρ2

δt
+ ρ2∇∇∇ ··· V2 = 0 ⇒ dρ

dt
+∇∇∇ ··· (ρVm) = 0, (123)

whereρ = ρ1 + ρ2 andρVm = ρ1V1 + ρ2V2.
The next assumption of the conventional theory is that there is no sliding between the rigid

particles and the fluid. From the physical point of view that means that the norms of the viscous
friction tensors strive to infinity

||µµµ1|| → ∞, ||µµµ2|| → ∞, ||µµµ12|| → ∞. (124)

Since the norms of vectorst′, t′′ andQ must be limited then from the constitutive equations (76),
(80) and (82) we obtain the following restrictions

V1 = V2 = Vm ≡ V, 2ωωω =∇∇∇× V, (125)

which are usually assumed except, may be, the last condition. However, this condition must be
valid too. In this case instead of equations of motion (118)–(120) we shall get

−∇∇∇p1 + 2∇∇∇ ··· (µµµ ··· ···D) +∇∇∇× t′ + Q + ρ1F1 = ρ1
δV
δt

,

−∇∇∇p2 +∇∇∇× t′′ − Q + ρ2F2 = ρ2
δV
δt

, p2 ' 0,

−η2µ3∇∇∇× (∇∇∇×ωωω) − 2t + ρ2L = ρ2
δ

δt
(J ···ωωω), (126)

where the vectorst′, t′′, Q are not defined by constitutive equations any more. We may rewrite
this system as a set of two equations

−∇∇∇p1 + 2∇∇∇ ··· (µµµ ··· ···D) +∇∇∇× t + ρF = ρ
δV
δt

, 2ωωω =∇∇∇× V,

− η2µ3∇∇∇× (∇∇∇×ωωω) − 2t + ρ2L = ρ2
δ

δt
(J ···ωωω). (127)

The latter equation allows to express the vectort in terms of the velocityV and its derivatives.
Generally speaking, further simplifications are not possible. However, Eqs. (127) are more com-
plicated than those used in the conventional theory.

To proceed with one more step forward to the conventional theory we have to assume that

µ3 = 0, L = 0, J = 0 ⇒ t = 0. (128)

The first from these restrictions is the hypothesis of the dilute mixture. The third one is the
hypothesis of the inertialess particles. Now we have the following equations

−∇∇∇p1 + 2∇∇∇ ··· (µµµ ··· ···D) + ρF = ρ
δV
δt

, ωωω =
1

2
∇∇∇× V, (∇∇∇ ···ωωω = 0) . (129)
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If we introduce a unit vectorm(t) connected to the fiber symmetry axis, then we obtain

δm(t)

δt
=

1

2
(∇∇∇× V)×m(t) =

1

2
(m ··· ∇∇∇V −∇∇∇V ···m) . (130)

The last, but not least restriction is that of incompressibility

∇∇∇ ··· V = 0,
δρ

δt
= 0. (131)

This condition means that the pressure is not defined by the constitutive equation anymore. It
must be found from the equations of motion. Thus, the phase transitions in the mixture must be
ignored. Let us note, that the conditionρ = const does not follow from Eq. (131).

Thus, after all assumptions we have obtained the set of equations (129)–(131). We have to
add to these equations the statement that the viscous tensorµµµ is a transversely isotropic function
of the unit vectorm and the tensorD. We do not discuss this question since the solution of this
problem is well-known. It is easy to see that the set of equations (129)–(131) does not correspond
exactly to that in the conventional theory (see the Introduction to this paper). The only difference
is that Eq. (130) does not coincide with the Eq. (13). In order to see this difference more clearly
let us rewrite Eq. (13) in the equivalent form

ṁ =

(
1

2
∇∇∇× V +

c2 − a2

c2 + a2
m× d ···m

)
×m, d =

1

2

(∇∇∇V +∇∇∇VT
)
. (132)

What equation (Eq. (130) or Eq. (132)) is more right? We do not know the exact answer. On
one hand, Eq. (132) seems to be more preferable since it contains the parameters of the particle.
On the other hand, this fact seems to be strange if we assume that there is no sliding between the
solid particle and the fluid. Consequently the rotations of the solid particle and the fluid must be
the same. That means that the shape of a particle should be not important. It is true for Eq. (130)
but it is not true for Eq. (132). Let us note that Eq. (130) may be derived by many ways.
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Symmetries and Orthogonal Invariants
in Oriented Space∗

Abstract

The theory of the tensor symmetry is modified in order to include into consideration the
Non-Euclidean tensors. The polar (Euclidean) and axial (Non-Euclidean) tensors are dis-
cussed. A new definition of the tensor invariants is given. This definition coincides with the
conventional one only for the Euclidean tensors. It is shown that any invariant is the solution
of some partial differential equation of the first order. The number of the independent solu-
tions of this equation determines the minimal number of the invariants which are necessary
in order to fix a system of tensors as a rigid whole. This result was not found in the known
publications. The examples of some systems of tensors are discussed in order to give the
comparison with known results.

1 Introduction

Symmetries and orthogonal invariants are important theoretical tools for many fields of me-
chanics. Therefore these tools must be applicable to all objects widely used in mechanics. Un-
fortunately this is not so. The application of the classical theory of symmetry leads to the mean-
ingless results in shell theory and not only in shell theory. The main reason of this is that in
many cases we are forced to work in multi-oriented spaces. The classical theory of symmetry
and invariants is well defined in non-oriented vector space only. In order to define the cross
product of vectors we have to introduce the oriented vector space. There are two different types
of tensors acting in oriented space. These tensors are known as polar and axial ones. In ori-
ented space the classical theory of symmetry is well defined for polar tensors. There exist many
formally equivalent ways for introduction of the space orientation. In this paper we introduce a
definition of the space orientation in such a way that the physical sense of this concept is quiet
clear. Besides we restrict ourselves by consideration of the oriented space. In general case this
is not enough. For example, in shell theory it is necessary to use multi-oriented space. Briefly
speaking in shell theory 3D-space E3 must be represented as a direct sum of 2D-space E2 and
1D-space E1: E3 = E2 ⊕ E1. If we orientate each of these spaces, then we obtain three oriented
spaces EO

3 , EO
2 and EO

1 . Suppose that there is a relation EO
3 = EO

2 ⊕ EO
1 . In such a case only

∗Zhilin P.A. Symmetries and Orthogonal Invariants in Oriented Space // Proceedings of XXXII Summer School –
Conference “Advanced Problems in Mechanics”, St. Petersburg, Russia, 2005. P. 470–483.
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two orientations are independent and we have 2-oriented space. In this 2-oriented space the four
different types of tensors may be defined. The classical theory of symmetry is correct for one of
these types of tensors called polar tensors. The modified theory of symmetry for other types of
tensors may be found in the paper [1].

At the moment oriented space is the most important and popular vector space in mechanics.
By this reason the paper deals with the symmetries and orthogonal invariants in oriented space.
Necessary generalizations may be obtained without any problems.

1.1 Classical theory

The classical theory of the tensor symmetry and the tensor invariants was born due to
O. Cauchy and is extensively developing up to now. The books [2, 3, 4] contain the conventional
statements of the problem. The modern applications of symmetries and invariants to mechanics
may be found in the book [5]. Recall that almost all modern results of the invariant theory are
obtained for the polynomial invariants [6]. The sufficiently complete list of the modern papers
on the subject may be found in the paper [7].

In this subsection we reproduce the basic definitions of the classical theory in order to avoid
the possible misunderstandings. In the sequel the direct tensor notation [8] is used. In some
works [6] the term “direct notation” has another meaning: a notation a is assigned to the triple
of vector coordinates.

In the sequel the next notation will be used

f, g, . . . , h︸ ︷︷ ︸
scalars

; a ≡ aigi, b, . . . , c︸ ︷︷ ︸
vectors

; A ≡ Aijgi ⊗ gj, B, . . . ,C︸ ︷︷ ︸
2-rank tensors

; . . . ,

where vectors gi consist arbitrary basis in the reference system.
The set of second-rank tensors Q such that

Q · QT = E, det Q = ±1

is called orthogonal group, which contains infinitely many different elements but any of them
may be generated by two orthogonal tensors. First of them is the tensor of a mirror reflection
from the plane with unit normal n. This tensor is determined by the expression

Q = E − 2n ⊗ n, Q · QT = E, det Q = −1. (1)

The second tensor is the tensor of turn (rotation). With the help of Euler’s theorem this tensor
may be represented in the following form

Q(ϕm) ≡ (1 − cos ϕ)m ⊗ m + cos ϕE + sin ϕm × E, det Q = +1, (2)

where the unit vector m determines a strait line called the turn axis, an angle ϕ is called the turn
angle. The action of the tensor (2) on a vector a is the turn of a around the vector m by the
angle ϕ. Any orthogonal tensor may be represented as the composition of the tensors (1) and
(2).

In classical theory the orthogonal transformation of the n-rank tensor D is defined by the
formula

D ′ ≡ Qn � D ≡ Qn � (Di1...ingi1
⊗ . . . ⊗ gin

) ≡ Di1...inQ · gi1
⊗ . . . ⊗ Q · gin

(3)
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For example, for scalars, vectors and 2-rank tensors we have

f′ ≡ f, a′ ≡ Q · a, A′ ≡ Q · A · QT
.

Classical definition of the symmetry group: the sets of orthogonal solutions of the equations

a ′ ≡ Q · a = a, A ′ ≡ Q · A · QT = A, D ′ ≡ Qn � D = D (4)

are called the groups of symmetry (SG) of the vector a, 2-rank tensor A and n-rank tensor
D correspondingly, where the vector a, 2-rank tensor A and n-rank tensor D are given and
orthogonal tensors Q must be found.

Definition. The n-rank tensor D is called isotropic if its group of symmetry contains all
orthogonal tensors.

There are two basic problems in the theory of symmetry:
Direct problem: to find SG for the given system of tensors.
Inverse problem: to find the structure of a tensor of some order with given elements of

symmetry.
In non-oriented vector space the definition (4) leads to the correct results both from the math-

ematical and from physical points of view. However in oriented vector space with cross product
of vectors this definition generates some paradoxical results from physical point of view.

Physical paradoxes.
1. Let V be a vector of translation velocity and ω be a vector of the angular velocity such that

V × ω = 0. Accordingly to the definition (4) these vectors have the same groups of symmetry.
This is nonsense from physical point of view.

2. Tensor E×E is not isotropic. From physical point of view this result seems to be doubtful.
Definition. A scalar-valued tensor function ψ(f, a, A) is said to be the orthogonal invariant

if the equation
ψ(f ′, a ′, A ′) = ψ(f, a, A) (5)

holds for all orthogonal tensors Q.
Theorem (Gilbert). For any finite system of tensors there exist a finite basis of invariants,

that means the finite system of the functionally independent scalar invariants such that all other
invariants can be expressed in terms of basis invariants.

The central problem in classical invariant theory: for a given set of tensors and a given
transformation group, determine a set of invariants from which all other invariants can be gen-
erated.

Physical paradox: a mixed product of three vectors (a × b) · c is not invariant with respect
to orthogonal group.

It is easy to give a lot of other examples in which the classical theory leads to the physical
mistakes. All these examples are connected with axial objects in oriented system of reference
[9]. A lot of important discussions on the subject may be found in [10] – [22]. Some of them
will be considered below.

1.2 A modified statement of the problem

The main purpose of the paper is to modify the classical theory in order to avoid the contra-
dictions between mathematics and physics.
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For this end we have to slightly change the definitions of the invariants and groups of symme-
try. For example, the problem of invariants may be reformulated by the next manner. Let there
be given two sets of tensors

a1, a2, . . . am, A1, A2, . . .An (6)

and
b1, b2, . . . bm, B1, B2, . . .Bn. (7)

The invariant problem. To find the minimal collections of the invariants for the system (6)
and (7) whose coinciding is the guarantee of existing of the proper orthogonal tensor P : det P =
1 such that equalities

b1 = P · a1, b2 = P · a2, . . . , bm = P · am,

B1 = P · A1 · PT
, . . . , Bn = P · An · PT (8)

holds. This statement will be called I-problem in what follows.
In other words, if the basis invariants for the system (6) and (7) coincide, then the system (7)

may be obtained from the system (6) by the rigid rotation.
In the classical statement of the problem the tensor P in (8) may be orthogonal one rather then

proper orthogonal tensor. For physical applications the tensor P must be the proper orthogonal
tensor. This fact will be shown in what follows.

2 Orientation of Reference System. Polar and Axial Objects

The necessity of orientation of reference system arises due to our desire to take into account
the moment interaction in mechanics. In the nature there are two principally different kinds of
motion: the translation motion and the spinor (rotational) motion. Under translational motion a
body is changing the position in the space. Under spinor motion a body is changing an orientation
in the space without changing of position. The changing of translational motion is determined by
forces. The changing of spinor motion is determined by moments. Note that in general moments
can not be reduced to the concept of the force moment. In order to describe the spinor movements
and the moment interactions we must orient the reference system and to introduce some new
objects called axial objects in addition to the conventional objects called polar. There are many
different but mathematically almost equivalent ways to introduce the space orientation. We prefer
a way with clear physical sense. The physical (and mathematical) image of the spinor movement
is given by so-called spin-vector whose introduction does not require the space orientation. Let
there be given some system of reference (SR). Polar vector is represented in SR as an arrow. In
addition to polar vector let us introduce a new object called spin-vector. For this it is necessary
to take a strait line in SR called axis of a spin-vector. After that a circular arrow around the axis
of a spin-vector must be drown in the plain orthogonal to the axis. Now we have a visual image
of the spin-vector — see Figure 1a.

The length of the circular arrow is called a modulus of the spin-vector. A direction of a
circular arrow shows the direction of a rotation. Spin-vectors describe characteristics of spinor
movements. They are convenient for an intuition. However for the formal calculations it is much
better to use so-called axial vectors. An axial vector can be obtained from a spin-vector with the
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â

a). Object â is called
a spin vector

a

b). Strait arrow is the axial
vector a corresponding to
â in the right-oriented SR

a

c). Strait arrow is the axial
vector a corresponding to
â in the left-oriented SR

Figure 1: Oriented System of Reference

help of special rule called an orientation of the reference system. An axial vector a is associated
with the spin-vector â by means of the following rule:

1) a is placed on the axis of spin-vector â, 2) modulus of a is equal to the modulus of â, 3)
the vector a is directed as shown at the Fig.1b (in such a case we have the right-oriented SR) or
as shown at the Fig.1c (in such a case we have the left-oriented SR).

The concept of an axial vector introduced above is the exact expression of a physical idea
about angular velocity, moment and so on. The introduction of axial vector does not require
any system of coordinates. For example, the coordinate free introduction of the cross product
of vectors with the using of spin-vector may be found in [9]. Let us consider two different
coordinate systems in SR. Let gi and gi ′ be the local bases of these coordinate systems. If

gi ′ = hm
i ′ gm, gi ′

= hi ′
mgm, hi ′

mhm
k ′ = δi

k, hi ′
mhn

i ′ = δn
m,

then we have
a = aigi = ai

′
gi ′ , ai

′
= hi

′
mam. (9)

This transformation of the vector components is valid both for polar vectors and for axial vec-
tors. Here there is a contradiction with the conventional determinations for axial vectors whose
coordinates are transformed accordingly to the rule (see, for example, [6])

ai ′
= det(hk ′

n )hi ′
mam,

where matrix hk ′
n is supposed to be orthogonal.

From the pure mathematical point of view this definition is possible. However from physical
point of view only the definition (9) must be used. Indeed the simplest example of axial vector
is given by the cross product of two polar vectors

c = a × b ⇒ cp = ambn(gm × gn) · gp.

In other system of coordinates we have

cp ′ = am ′
bn ′

(gm ′ × gn ′) · gp ′ = arhm ′
r bshn ′

s (gm ′ × gn ′) · ht
p ′gt =
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= ht
p ′a

rbs(gr × gs) · gt = ht
p ′ct.

For axial vector we obtain a standard law of transformation for covariant coordinates of vectors.
Thus in the oriented SR there are two kinds of objects: polar objects and axial objects.
Definition. Objects, which are independent of the choice of orientation of SR, are called the

polar objects; objects, which depend on the choice of orientation of SR and are multiplied by (-1)
under changing of orientation of SR, are called the axial objects.

In according with the definition axial objects may be represented by scalars, vectors and
tensors of any rank. The well known examples of axial objects are: the mixed product of three
polar vectors a · (b × c), vector of angular velocity, the Levi - Civita tensor E × E and so on.

3 Modified Definition of Orthogonal Transformation

In oriented space the definition of orthogonal transformation (3) must be slightly changed.
Definition. The orthogonal transformation of the scalar g, of the vector a, of the second-rank

tensor A and of the n-rank tensor D are defined by formulae

g ′ ≡ (detQ)αg, a′ ≡ (detQ)αQ · a, A′ ≡ (detQ)αQ · A · QT
,

D′ ≡ (detQ)αQn � D, (10)

where α = 0 for polar objects, α = 1 for axial objects.
The definition (10) coincides with the classical definition (3) for the polar tensors. Correct-

ness of the definition (10) can be shown by means of simple examples. Let us consider the axial
scalar ψ = (a × b) · c, where all vectors are polar ones. Then the orthogonal transformation of
the scalar ψ may me found directly

ψ ′ = a ′ · (b ′ × c ′) = (Q · a) · [(Q · b) × (Q · c)] =

= (a · QT ) · [(detQ)Q · (b × c)] = (detQ)a · (b × c) = (detQ)ψ,

where the identity
(Q · b) × (Q · c) = (detQ)Q · (b × c)

was used.
As a result we obtain the definition (10). The vector product of two polar vectors is a typical

example of an axial vector. In this case the direct definition is possible as well

c ′ = a ′ × b ′ = (Q · a) × (Q · b) = (detQ)Q · (a × b) = (detQ)Q · c.

By this way the definition (10) may be derived for a tensor of any rank.

4 Symmetry Groups of Tensors

Definition. The sets of the orthogonal solutions of the equations

(detQ)αψ = ψ, (detQ)αQ · a = a, (detQ)αQ · A · QT = A, (detQ)αQn � D = D

(11)
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are called the symmetry groups (SG) of the scalar ψ, the vector a, the second rank tensor A and
the n-rank tensor D correspondingly, where ψ, a, A and D are given, orthogonal tensors Q

must be found.
Let us consider some examples.
Symmetry group of vector. For a polar vector a the SG contain tensors (2), where m =

a/|a|, and tensors (1), where n is any unit vector such that n · a = 0.
In order to establish SG of an axial vector a the orthogonal solutions of the equation

(detQ)Q · a = a

must be found. It is easy to see that the SG of the axial vector a contains tensors (2), where
m × a = 0, and tensors (1), where n × a = 0. The correctness of this result may be easy seen
at the Fig. 2.

a). The mirror reflection from the plane
parallel to the axis of spin-vector

b). The mirror reflection from the plane
orthogonal to the axis of spin-vector

Figure 2: On a symmetry of an axial vector

Thus the symmetry elements of polar and axial vectors are different under the mirror reflec-
tions.

Usually it is not difficult to find the SG of any given tensor. However in the theory of con-
stitutive equations the solution of the inverse problem is much more important. For this it is
necessary to find the structure of a tensor with given elements of symmetry.

Second rank tensor with one plane of the mirror symmetry. Polar and axial tensors with
the same elements of symmetry have different structures. Let, for example, the mirror reflection
E − 2m ⊗ m belongs to the SG of a polar tensor A and an axial tensor B. It is possible if and
only if these tensors have the form

A = A11m ⊗ m + A22n ⊗ n + A23n ⊗ p + A32p ⊗ n + A33p ⊗ p,

B = B12m ⊗ n + B13m ⊗ p + B21n ⊗ m + B31p ⊗ m,

where Aik are absolute scalars and Bik are axial scalars, m, n, p is an orthogonal basis. If
there are two planes of mirror symmetry with unit normals m and n, then

A = A11m ⊗ m + A22n ⊗ n + A33p ⊗ p, B = B12m ⊗ n + B21n ⊗ m. (12)
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Example: naturally twisted rods. The specific energy of thin elatic rods is determined by
quadratic form

U =
1

2
e · A · e + e · B · κ +

1

2
κ · C · κ, (13)

where the vectors of deformation are defined by the expressions

e = u ′ + p × ϕ, κ = ϕ ′.

Let vectors m and n be principle directions of the rod cross section. Let tensors
E − 2m ⊗ m and E − 2n ⊗ n be elements of symmetry for the cross section. If we apply
the classical theory of symmetry, then we obtain that in such a case the tensors of elasticity A, B

and C in (13) have the form of the tensor A in (12). This is nonsense from physical point of view.
If we use the modified theory of symmetry, then only the polar tensors of elasticity A and C in
(13) have the form of the tensor A in (12) but the axial tensor B in (13) has the form of the tensor
B in (12). Let p be the unit normal vector to the cross section. As a rule tensor E − 2p ⊗ p

belongs to the SG of the rod. In such a case the axial tensor of elasticity B in (13) is equal to
zero. However for naturally twisted rods (for example, drills) the tensor E − 2p ⊗ p does not
belong to the SG of the rod. Because of this the axial tensor of elasticity B in (13) has the form
of the tensor B in (12). This result can not be obtained with the help of the classical theory of
symmetry.

Definition. The n-rank tensor is called isotropic one if its group of symmetry contains all
orthogonal tensors.

There is one polar isotropic 2nd-rank tensor fE, where f is an absolute scalar. There are
no axial isotropic tensors of the 2nd-rank. There are no polar isotropic tensors of the 3d-rank.
However there is one axial isotropic 3d-rank tensor fE × E, where f is an absolute scalar. Indeed,
according to the definition (10) we have

(E × E) ′ ≡ (gm ⊗ gm × gn ⊗ gn) ′ ≡ (detQ)Q · gm ⊗ Q · (gm × gn) ⊗ Q · gn =

= [Q · (gm ⊗ gm) · QT ] × [Q · (gn ⊗ gn) · QT ] = [Q · E · QT ] × [Q · E · QT ] = E × E.

The tensor fE × E is supposed to be non-isotropic under the conventional approach. This
fact is important in the theory of piezoelectricity.

5 Orthogonal invariants and theorem on basis

Let there be given the finite collection of the tensors (6).
Definition. A scalar-valued tensor function

F = F(a1, a2, . . .am, A1, A2, . . . An)

is called an orthogonal invariant of the collection (6) if the equality

F(a ′
1, . . . ,a ′

m, A ′
1, . . . ,A ′

n) = (detQ)α F(a1, . . . ,am, A1, . . .An), (14)

holds for all orthogonal tensors Q; the quantities with primes are defined by (10); α = 0, if
values of F are absolute scalars, and α = 1, if values of F are axial scalars.
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Let us consider the function

ψ(a, b, c) ≡ (a × b) · c, (15)

where a, b, c are polar vectors. Accordingly to classical definition (5) the function ψ is not
orthogonal invariant. In accordance with the definition (14) the function ψ is orthogonal invariant
since

ψ(a ′, b ′
, c ′) = (a ′ × b ′) · c ′ = (detQ)(a × b) · c = (detQ)ψ(a, b, c).

Another example is the scalar product of polar V and axial ω vectors

ψ(V, ω) ≡ V · ω. (16)

With respect to definition (5) this function is not an orthogonal invariant. In accordance with
the definition (14) the function (16) is orthogonal invariant. From the pure mathematical point
of view this is a question of the definitions and there is no subject for discussions. However the
situation is quiet different if we consider the problem from physical point of view.

Let us consider an one-spin particle — see Figure 3. An one-spin particle, shown with using

VVV

ω̂ ω ω

a). One-spin particle:
a physical object

b). One-spin particle:
the mathematical image
in the right-oriented SR

c). One-spin particle:
the mathematical image
in the left-oriented SR

α

π − α

Figure 3: One spin-particle: physical and mathematical images

of spin-vector, is presented at the Figure 3a. This image does not depend on the SR orientation.
The mathematical image, obtained with using of an axial vector, is shown on the Figure 3b in the
right-oriented SR and on the Figure 3c in the left-oriented SR. It is seen that

(V · ω)R ≡ Vω cos α = − (V · ω)L ≡ −Vω cos(π − α).

Let us note that the nature and physical objects, for example spin-vectors, know nothing about
orientation of SR. Axial vectors are some mathematical inventions and they feel the change of
the SR orientation. The scalar product (V · ω)R in the right-oriented SR is not equal to the
scalar product (V · ω)L in the left-oriented SR. However both of them correspond to the single
physical object. By this reason the scalar product (16) must be called an invariant. This fact is
taken into account by the definition (14).
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Now we are able to discuss the problem of invariants. It is obvious that Hilbert’s theorem is
valid both for the definition (14) of orthogonal invariants of the collection (6) and for the clas-
sical definition (5). However Hilbert’s theorem says nothing about the number of functionally
independent invariants consisting the basis. From the pure physical point of view the basis di-
mension may be found by simple calculation. The result of this calculation leads to the following
statement.

Theorem. The dimension N∗ of the invariant basis of the collection (6) is related with the
number N of independent coordinates of objects in (6) by the next formulae

N∗ = 1 when m = 1, n = 0; N∗ = N − 3 (17)

in all other cases.
The proof of the theorem will be given in what follows. Let us note that well-known Rivlin’s

theorem states that N∗ = N − 2.

6 Generic Equation for Invariants

The definition (14) of an invariant of the collection (6) contain an arbitrary orthogonal ten-
sor Q. In what follows without loss of generality we may suppose that tensor Q is a proper
orthogonal tensor since an arbitrary orthogonal tensor Q can be represented as composition
Q = (−E) · P, where P is a proper orthogonal tensor. The inversion transformation may be
taken into account later. In such a case let us consider a continuous set of orthogonal tensors
Q(τ), depending on real parameter τ. It is easy to prove that there exist an axial vector ω(τ)
satisfying the equation

d

dτ
Q(τ) = ω(τ) × Q(τ), Q(0) = E, ω(0) = ω0 �= 0. (18)

If the orthogonal tensor Q(τ) in (14) depend on the parameter τ, then we may differentiate
both sides of (14) with respect to τ. In such a case we obtain the following equation

m∑
i=1

∂F

∂a′
i

· da′
i

dτ
+

n∑
i=1

(
∂F

∂A′
i

)T

· ·dA′
i

dτ
= 0. (19)

The derivatives of a scalar function with respect to vector and tensor arguments is defined by the
rule

dF =

m∑
i=1

∂F

∂ai

· dai +

n∑
i=1

(
∂F

∂Ai

)T

· ·dAi. (20)

An example. Let there be given a scalar function

F(a, b, A) = a · A · b ⇒ dF = (A · b) · da + (a · A) · db + (a ⊗ b)T · ·dA.

According to (20) one has

∂F

∂a
= A · b,

∂F

∂b
= a · A,

∂F

∂A
= a ⊗ b.
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Making use of equality (18), the derivatives may be calculated

da′
i

dτ
= ω(τ) × a′

i,
dA′

i

dτ
= ω(τ) × A′

i − A′
i × ω(τ).

Let us take into account the equalities

a′
i(0) = ai, A′

i(0) = Ai.

Let τ in the equality (19) be equal to zero. Using the equalities written above we obtain

n∑
i=1

(
∂F

∂Ai

)T

· ·(ω0 × Ai − Ai × ω0) +

m∑
i=1

∂F

∂ai

· (ω0 × ai) = 0. (21)

The equation (21) is the linear homogenous equation in the partial derivatives of the first
order. This equation must be valid for any vector ω0. Because of this the equation (21) is
equivalent to the three scalar equations. Any scalar invariant of the collection (6) must be solution
of the equation (21). Instead of the eq. (21) it is more convenient to use an equation obtained
from the eq. (21) by dividing on the modulus of vector ω 0

n∑
i=1

(
∂F

∂Ai

)T

· ·(m × Ai − Ai × m) +

m∑
i=1

∂F

∂ai

· (m × ai) = 0, (22)

which must be valid for any unit vector m.
In what follows the equation (22) will be called the generic equation for the invariants. The

unit vector m may be excluded from the equation (22). In such a case instead of the scalar
equation (22) we obtain the vector equation

n∑
i=1

[(
∂F

∂Ai

)T

· Ai + Ai ·
(

∂F

∂Ai

)T
]
×

+

m∑
i=1

∂F

∂ai

× ai = 0, (a ⊗ b)× ≡ a × b, (23)

where the vector A× is called a vector invariant of the 2nd-rank tensor A. The vector equation
(23) is equivalent to the three scalar equations. Any orthogonal invariant must satisfy this three
equations. However in general case not all of these equations are independent. If the collection
(6) contains more than one vector, then all three equations are independent.

The equation (23) is a system of three linear equation in partial derivatives. Any scalar
invariant of the collection (6) must be solution of the equation (21). And conversely, any solution
of equation (23) is the invariant of the collection (6). Coordinates of vectors and tensors of the
set (6) are independent variables. Therefore this equation is defined in the space of dimension
N = 3m + 6n. The function F(a1, a2, . . . am, A1, A2, . . . An) depends on N arguments.
The theory of the equations in the partial derivatives of the first order is well developed. It may
be said that each of the scalar equation of the system (23) decreases the number of independent
variables on one. The number of the rest independent variables is the number of functionally
independent invariants. Thus the dimension of the invariant basis is equal to N − q, where
2 ≤ q ≤ 3 is the number of independent equation of the system (23). If N = 3, then q = 2. If
N > 3, then q = 3.

Below the application of this theorem will be considered.
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7 The basis invariant of vector

In this case the equation (23) takes a simple form

∂F

∂a
× a = 0 ⇔

a1

∂F

∂a2

− a2

∂F

∂a1

= 0, a2

∂F

∂a3

− a3

∂F

∂a2

= 0, a1

∂F

∂a3

− a3

∂F

∂a1

= 0,

where ai are coordinates of vector a with respect to some orthogonal basis.
The last equation is a consequence of two previous equations. Because of this there are only

two independent equations

a1

∂F

∂a2

− a2

∂F

∂a1

= 0, a2

∂F

∂a3

− a3

∂F

∂a2

= 0. (24)

The function F must satisfy two independent equation (24) in partial derivatives of the first order.
We have to find a general solution of the first equation. After that this general solution must be
obeyed to the second equation.

In order to find a general solution of the first equation we have to write down the characteristic
system for this equation

da1

ds
= − a2,

da2

ds
= a1 ⇒ d

ds

(
a2

1 + a2
2

)
= 0, (25)

where ai(s) is the parametric form of a curve in 3D-space of coordinates a i, s is the parameter.
The linear system (25) of the second order has not more then one independent integral. Any
function of this integral is an integral of (25) as well. The integral shown by the last equality
in (25) may be taken as such independent integral. Thus a general solution of the first equation
from (25) is given by expression

F(a) = F(a1, a2, a3) = f(a2
1 + a2

2, a3).

Substituting this solution into the second equation from system (24), we obtain

∂f

∂a3

− 2a3

∂f

∂q
= 0, q ≡ a2

1 + a2
2.

The characteristic system for this equation has a form

dq

ds
= − 2a3,

da3

ds
= 1 ⇒ d

ds

(
q + a2

3

)
= 0.

This system of the second order has the only independent integral. One may choose the integral
q + a2

3. Therefore any orthogonal invariant may be expressed as a function of the modulus of
vector a

F(a) = f(q, a3) = g(a · a).

In this case the basic theorem has been almost proved. Of course this result is well-known and
was obtained by O. Cauchy.
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Let us obtain this result by direct coordinate-free approach. The equation (22) and corre-
sponding to it the characteristic system take a form

∂F

∂a
· (m × a) = 0,

da

ds
= m × a. (26)

The vector characteristic equation (26) has the third order and two independent integrals

a · a = const, m · a = const.

The second integral depends on arbitrary vector m and must be taken off. The coordinate-
free approach is much shorter and will be used below.

In order to finish the proof of theorem we have to show that two vectors with the same moduli
may be transformed from one to other by means of pure turn. Let there be given two vectors a

and b, whose moduli and kinds are the same. A general transformation of a vector, conserving
its modulus, is given by

a = (detQ)αQ · b, Q · QT = E, detQ = ±1,

where α = 0 for polar vectors and α = 1 for axial vectors. It is not what we wont. In I-problem
the tensor Q must be proper orthogonal tensor. Let us note that the tensor Q in the last equality
is not completely defined. Indeed this equality may be rewritten in the equivalent form

a = (detQ)αQ · (detS)αS · b, (detS)αS · b = b,

where tensor S belongs to SG of vector b. Thus we have

a = Q∗ · b, Q∗ ≡ det(Q · S)α Q · S, detQ∗ = [det(Q · S)]1+α = 1.

If α = 1, then the last condition is valid identically. If α = 0, then it may be satisfied by
appropriate choice of the tensor S. For example, if det Q = −1, then we may take S = E −
2m ⊗ m, where m · b = 0, |m| = 1.

8 Basic invariants for a set of three vectors

Let us find the minimally complete set of basic invariants for a collection of three vectors
a, b, c. The equation (22) for invariant F(a, b, c) takes the form

∂F

∂a
· (m × a) +

∂F

∂b
· (m × b) +

∂F

∂c
· (m × c) = 0.

The characteristic system for this equation is

da

d s
= m × a,

db

d s
= m × b,

dc

d s
= m × c. (27)

General solution of (27) is given by

a(s) = Q(sm) · a0, b(s) = Q(sm) · b0, c(s) = Q(sm) · c0, (28)
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where vectors a0, b0, c0 are arbitrary constant vectors. The system (27) of ninth order has not
more than eight integrals. In order to find these integrals, it is necessary to exclude the variable
s and the vector m from (28). It is easy to build up ten integrals. Three of them depend on
arbitrary vector m

m · a = m · a0, m · b = m · b0, m · c = m · c0.

These integrals must be ignored.
Seven invariants are determined by the next integrals

I1 = a · a, I2 = b · b, I3 = c · c, I4 = a · b, I5 = a · c, I6 = b · c, (29)

I7 = a · (b × c). (30)

Invariants I1 – I7 are not independent since there is an obvious relation

I27 ≡
∣∣∣∣∣∣

I1 I4 I5
I4 I2 I6
I5 I6 I3

∣∣∣∣∣∣ .
Therefore seven integrals (29) and (30) may be expressed in terms of six functionally inde-

pendent integrals.
This example clearly shows the distinction between classical approach and the approach

under consideration. Accordingly to classical definitions the axial scalar is not invariant. Because
of this some scalars must be excluded from the list (29). For example, let vectors a and b be
polar ones but c is an axial vector. In such a case the invariants I5 and I6 are the axial scalars and
must be excluded from the list (29). That means that the classical problem of invariants has no
solution. If all three vectors are polar ones, then from the classical point of view the invariant I 7

must be excluded from the list (29)–(30). However the fixation of the invariants I 1 – I6 does not
fix the triple of vectors a, b, c as a rigid whole. In such a case the I-problem has no solution.
Indeed let us consider the two triples of vectors: a, b, c and

a, b, (E − 2k ⊗ k) · c, k = a × b/|a × b|.

This triple of vectors is formed from polar vectors. Invariants I 1 – I6 are the same for both
triples of vectors. Nevertheless the second triple can not be obtained from the first triple by rigid
rotation. Invariants (29)–(30) for these triples are different.

In order to solve the I-problem we must prove the existing of the proper orthogonal tensor P

such that the relations (8) holds good. Let there be given two triples of vectors

a, b, c and a∗ = am, b∗ = bn, c∗ = cp.

Invariants I1 − I3 for these triples are supposed to be the same. In such a case we have

a = aQa · m, b = bQb · n, c = cQc · p, (31)

where Qa, Qb, Qc are orthogonal tensors. The coincidence of invariants I 4−I6 gives equations
for determining of tensors Qa, Qb, Qc

m · QT
a · Qb · n = m · n, m · QT

a · Qc · p = m · p, n · QT
b · Qc · p = n · p. (32)
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From (32) the next equalities may be obtained

QT
a ·Qb = S(m,1) ·S(n,1), QT

a ·Qc = S(m,2) ·S(p,1), QT
b ·Qc = S(n,2) ·S(p,2), (33)

where orthogonal tensors S(m,k), S(n,k), S(p,k) are some elements of symmetry of the vectors
m, n and p correspondingly. The equalities (33) lead to the restrictions

QT
b · Qc = QT

b · Qa · QT
a · Qc = ST

(n,1) · ST
(m,1) · S(m,2) · S(p,1) = S(n,2) · S(p,2). (34)

Now the equalities (31) takes a form

a = aQa · m, b = bQa · S(m,1) · n, c = cQa · S(m,2) · p,

where tensors S(m,1), S(m,2) are two arbitrary elements of symmetry of m. Invariants I1−I6 of
two triples under consideration for any orthogonal tensor Q a coincide. However the distinction
between these triples of vectors can not be reduced to the rigid rotation. If the invariants I 7 for
these triple of vectors coincide, then the equation

detQadetSm,1(m × n) · ST
(m,1) · S(m,2) · p = (m × n) · p.

must be valid. It will be so if and only if

detQadetS(m,1) = 1, S(m,1) = S(m,2).

Finally we obtain

a = P · a∗, b = P · b∗, c = P · c∗, P = Qa · S(m,1),

where Qa is an arbitrary orthogonal tensor, the tensor S (m,1) is a such element of symmetry
of vector a, that tensor P is a proper orthogonal tensor. Thus we obtain the solution of the
I-problem.

9 Basic invariants of a symmetric second-rank tensor

It is known that any orthogonal invariant of the symmetric second-rank tensor may be rep-
resented as a function of its principle invariants. Let us obtain this result by means of our ap-
proach. Let F(A) be some orthogonal invariant of A. Then it must satisfy the equation (22) for
m = 0, n = 1, which takes a form(

∂F

∂A

)T

· · (m × A − A × m) = 0.

Let us write down the characteristic system for (9)

dA(s)

ds
= m × A(s) − A(s) × m. (35)

We obtain the sixth-order system which has exactly five independent integrals. However two
of them depends on arbitrary unit vector m and may be ignored. A general solution of (35) is
given by expression

A(s) = Q(sm) · A0 · QT (sm), (36)
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where A0 is the tensor A in some fixed position, Q is a turn-tensor.
Excluding tensor Q from the solution (36) we obtain five independent integrals of (35)

I1 = tr A = tr A0, I2 = tr A2 = tr A2
0, I3 = tr A3 = tr A3

0,

I4 = m · A · m = m · A0 · m, I5 = m · A2 · m = m · A2
0 · m.

Any integral of (35) may be represented as a function of these integrals: f(I 1, I2, I3, I4, I5).
It is easy to see that the function f(I1, I2, I3, I4, I5) is an orthogonal invariant F(A) of the tensor
A, if and only if it is independent of I4, I5. In other words any orthogonal invariant F(A) of the
tensor A is a function of the form F(A) = f(trA, tr A2

, tr A3). Now we have to show that two
symmetric tensors with the same eigenvalues are connected by means of transformation of pure
rotation. Let us write down the theorem on spectral decomposition

A =
∑

Ai di ⊗ di, A∗ =
∑

Ak d∗
k ⊗ d∗

k,

where the triples of vectors di and d∗
k are orthonormal but they may have different orientation.

Thus we may write down

d∗
m = Q · dm = dm · QT ⇒ A∗ = Q · A · QT

,

where Q is an orthogonal tensor. If det Q = 1, then the I-problem has been solved. If det Q =
−1, then Q may be represented as decomposition Q = P · (− E). Using this decomposition we
have

A∗ = P · (− E) · A · (− E)T · PT = P · A · PT
, det P = 1,

and the I-problem has been solved as well.

10 Basic invariants of a collection of vector and of tensor

Let us consider a collection of vector a and of symmetric second-rank tensor A. In literature
[6] it is supposed that the set of six invariants

I1 = tr A, I2 = tr A2
, I3 = tr A3

, I4 = a · a, I5 = a · A · a, I6 = a · A2 · a (37)

fixes this collection.
Almost the same case we have for a collection of symmetric second-rank tensor A and of

skew-symmetric second-rank tensor W. It is supposed [6] that for this case it is necessary to set
seven integrals

I1 = tr A, I2 = tr A2
, I3 = tr A3

,

I ′4 = tr W2
, I ′5 = tr

(
W2 · A

)
, I ′6 = tr

(
W2 · A2

)
, I ′7 = tr

(
W2 · A · W · A2

)
.

(38)
From the other hand it is well known that for any skew-symmetric tensor W there exists

uniquely defined vector a such that
W = a × E.
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Making use of this representation one may obtain

I ′4 = −2a·a, I ′5 = a·A·a−a2trA, I ′6 = a·A2·a−a2trA2
, I ′7 = −a·A2·(a × A · a) .

(39)
By this reason it seems to be clear that the lists of invariants (37) and (38) must be the same.

But it is not so. One may think that the difference is arising due to following fact. The vector a

in (37) is a polar one, but the vector a in (39) is an axial one. However it can not be the reason
since the dimension of invariant basis is independent of the tensor kind.

Let us apply our approach to this case. For visual perception it is useful to keep in mind that
a collection of vector a and symmetric second-rank tensor A is equivalent to the collection

A, a, A · a, A2 · a.

Therefore it is necessary to find the list of invariants, whose fixation determines this collection
as a rigid whole. For a collection of vector a and symmetric second-rank tensor A the basic
equation (22) takes the form

∂F

∂a
· (m × a) +

(
∂F

∂A

)T

· · (m × A − A × m) = 0. (40)

The characteristic system for (40)

da

ds
= m × a,

dA

ds
= m × A − A × m.

This system of ninth order has exactly eight independent integrals. However only six from
them are independent of arbitrary vector m. These integrals are given by expressions

I1 = tr A, I2 = tr A2
, I3 = tr A3

, I4 = a · a, I5 = a · A · a,

I6 = a · A2 · a, I7 = a · A2 · (a × A · a) . (41)

The list (41) contain seven integrals but between them there is a relation

I27 =

∣∣∣∣∣∣
I4 I5 I6
I5 I6 a · A3 · a

I6 a · A3 · a a · A4 · a

∣∣∣∣∣∣ , (42)

which was not mentioned in literature. The invariants a ·A3 ·a and a ·A4 ·a in the determinant
(42) must be expressed in terms of invariants I1 – I6 with the help of the Cayley–Hamilton
identity.

The invariant I7 must be taken into account and can not be ignored. In order to verify this
fact it is enough to consider two collections

A, a and B = Sn · A · ST
n, a,

where Sn = E − 2n ⊗ n, n · n = 1, n · a = 0. It is easy to check that invariants I1 – I6 for
these two sets are the same. However we have

a · B2 · (a × B · a) = −a · A2 · (a × A · a) ,
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i.e. the triples of vectors a, A · a, A2 · a and a, B · a, B2 · a have different orientations and
can not be combined by a rotation.

Finally we obtain that the collection of vector a and symmetric second-rank tensor A has
exactly six functionally independent invariants (41)–(42). Now we have to show that the fixation
of the invariants (41)–(42) determines the collection of vector a and symmetric second-rank
tensor A as a rigid whole. Let us consider two sets a, A and b, B. If invariants I1 − I4 for these
sets are the same, then we have

a = Qa · b, A = QA · B · QT
A, (43)

where Qa and QA are any orthogonal tensors. Tensors Qa and QA must ensure the coincidence
of invariants I5 − I7 for these two sets. Thus we have

a · A · a ≡ b · Q · B · QT · b = b · B · b, a · A2 · a ≡ b · Q · B2 · QT · b = b · B2 · b,

where
Q ≡ QT

a · QA.

From these equation it follows

Q = (detSb)α(detSB)βSb · SB,

where Sb and SB are some elements of symmetry of vector b and of tensor B correspondingly,
α = 0 for polar b, α = 1 for axial b, β = 0 for polar B, β = 1 for axial B. Now we have

QA = (detSb)α(detSB)βQa · Sb · SB,

The relation (43) takes the form

a = Qa · b, A = Qa · Sb · B · ST
b · QT

a,

or
a = P · b, A = P · B · PT

, P ≡ (detSb)αQa · Sb (44)

Taking into account (44) and the expression for I 7 one may write down

a · A2 · (a × A · a) = (detP)b · B2 · (b × B · b) (45)

Since the I7(a, A) must be equal to I7(b, B) then we obtain detP = 1, i.e. the tensor P

must be the proper orthogonal tensor.

11 Basic invariants for a set of two tensors

Let us consider a collection of two symmetric tensors

A =

3∑
k=1

Ak ak ⊗ ak, B =

3∑
k=1

Bk bk ⊗ bk. (46)

It is claimed that in order to fix this system it is necessary to fix the next ten invariants

IAk = tr Ak
, IBk = tr Bk

, x = tr (A · B),
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y = tr (A2 · B), z = tr (A · B2), u = tr (A2 · B2). (47)

In the literature the tensors A, B are supposed to be polar. Let us note that for application
the case, when A is a polar tensor and B is an axial tensor, is much more important. Accordingly
to the theorem on the dimension of the invariant basis, the number of functionally independent
invariants is equal to nine. Therefore the invariants shown in the list (47) can not be functionally
independent. That means that there exists some relation superposed on the invariants (47).

Let us show that the invariants x, y, z, u in (47) can be expressed through the invariants
Ak, Bn and four parameters on which one obvious relation is superposed. For sake of simplicity
the eigenvalues Ak and Bn are supposed to be different. In such a case we may write

ak ⊗ ak = αkΓk(A), α−1
k = (Ak − Ai)(Ak − Aj), (48)

Γk(A) ≡ A2 − (IA1 − Ak)A + A−1
k IA3 E, i �= j �= k �= i;

bm ⊗ bm = βmΓm(B), β−1
m = (Bm − Bn)(Bm − Bp),

Γm(B) ≡ B2 − (IB1 − Bm)B + B−1
m IB3 E, m �= n �= p �= m.

Making use of (48) and (11) one may obtain

(ak · bm)2 = αkβm

[
u + (Ak − IA1 )(Bm − IB1 )x − (IB1 − Bm)y − (IA1 − Ak)z+

+
(
BmIB1 − 2JB

)
A−1

k IA3 +
(
AkIA1 − 2JA

)
B−1

m IB3 + 3 (AkBm)−1IA3 IB3
]
, (49)

2JA = (trA)2 − tr(A2), 2JB = (trB)2 − tr(B2).

The system (49) of nine equations is the linear system for four invariants x, y, z and u. It
may be verified that the rank of the system (49) is equal to four. Therefore the invariants x, y, z

and u may be expressed as function of eigenvalues Ak, Bn and and numbers ak · bm, which
are connected by six constraints

3∑
m=1

(ak · bm)2 = 1,

3∑
k=1

(ak · bm)2 = 1.

Let the triples ak and ak have the same orientation. This assumption does not restrict the
analysis. In such a case we may write down

bk = Q · ak, detQ = 1. (50)

The turn-tensor Q may be expressed in terms of turn-vector θ

Q(θ) = cos θ E +
(1 − cos θ)

θ2
θ ⊗ θ +

sin θ

θ
θ × E, (51)

where θ = |θ|.
Making use of (51) and (50), one may obtain

θ2ap · bp = θ2
p + cos θ (θ2 − θ2

p), θ2 = θ2
1 + θ2

2 + θ2
3, (52)
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(am · bp)2 =
(1 − cos θ)2

θ4
θ2

mθ2
p +

sin2 θ

θ2
θ2

s+

+ emps

2 sin θ(1 − cos θ)

θ3
θ1θ2θ3, m �= p �= s �= m, (53)

where emks is the permutation symbol, θk = θ · ak.
Let us show that invariants x, y, z, u can be expressed in term of the turn-vector components

and eigenvalues of the tensor A and B. For this end in the right side of (49) we may ignore the
terms depending on the eigenvalues of the tensor A and B only and rewrite (49) in the form of
three independent systems

u1 − (B2 + B3)y1 = a11, u1 − (B1 + B3)y1 = a12, u1 − (B1 + B2)y1 = a13; (54)

u2 − (B2 + B3)y2 = a21, u2 − (B1 + B3)y2 = a22, u2 − (B1 + B2)y2 = a23; (55)

u3 −(B2 +B3)y3 = a31, u3 −(B1 +B3)y3 = a32, u3 −(B1 +B2)y3 = a33. (56)

In (54)–(56) the next new unknown variables are introduced

um = u − (An + Ap)z, ym = y − (An + Ap)x, (57)

where m �= n �= p �= m. Besides the notation are used

aik = ai · bk/αiβk.

Solutions of (54)–(56) are given by expressions

um = amm +
Bn + Bp

Bn − Bp

(amn − amp), ym =
amn − amp

Bn − Bp

, (58)

where the numbers m, n, p consist the even permutation of 1, 2, 3. It is easy to find the solution
of (57)

x =
y1 − y2

A1 − A2

, y = y3 +
A1 + A2

A1 − A2

(y1 − y2),

z =
u1 − u2

A1 − A2

, u = u3 +
A1 + A2

A1 − A2

(u1 − u2).

Making use of (58) we finally obtain

x = (A1 − A3)
[
(B2 − B1)(a1 · b2)2 + (B3 − B1)(a1 · b3)2

]
.

The analogous formulae may be obtained for invariants y, z and u. It may be noted that in-
variants x, y, z, u are represented in terms of four numbers θ2

1, θ2
2, θ2

3, θ1θ2θ3. However there
is one obvious constraint θ2

1θ2
2θ2

3 = (θ1θ2θ3)2. Thus we see that the number of functionally
independent invariants is equal to nine. This is the statement of the theorem on the dimension of
the invariant basis.

The using of the turn-vector is possible but it is not convenient. So it would be better to use
more simple invariants with clear physical sense. To this end let us introduce the tensors

C(A, B) =

3∑
k=1

Bkbk × A × bk =

3∑
k=1

Akak × B × ak = C(B, A)
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and
D(A, B) = A · B − B · A = −D(B, A).

The skew-symmetric tensor D(A, B) may be represented as

A · B − B · A = −r × E ⇒ r = (A · B)×. (59)

The vector r characterizes a non-coaxiality of the tensors A and B. The tensor C is the isotropic
function of the tensors A and B. It may be represented a combination of the form

C = [tr(A · B) − trA trB] E + (trB)A + (trA)B − A · B − B · A.

The tensor C is convenient for applications since its eigenvalues characterize the reciprocal po-
sition of the tensors A and B.

In order to fix the collection (46) it is possible to set the next nine invariants. Firstly, they
contain the principal invariants of the tensors A and B

IA1 = tr A, IA2 =
1

2

[
(trA)2 − tr A2)

]
, IA3 = det A,

IB1 = tr B, IB2 =
1

2

[
(trB)2 − tr B2)

]
, IB3 = det B. (60)

Invariants (60) determine the eigenvalues Ak and Bk of the tensors A and B. Secondly, in
order to fix the reciprocal position of the tensors A and B it is possible to use the next three
invariants

trC, trC2
, r · r.

These invariants may be expressed in terms of invariants (47)

trC = tr(A · B) − trAtrB, r · r = tr(A2 · B2) − tr
[
(A · B)2

]
,

trC2 = [tr(A · B)]
2

+ trA2
trB2 − 2tr(A2 · B2).

Thus we may fix the next three invariants

tr(A · B), tr(A2 · B2), tr(A2 · B2) − tr
[
(A · B)2

]
. (61)

Now we have to show that fixation of the nine invariants (60), (61) determines the set of the
tensors A and B as a rigid whole. Let there be given two sets of the tensors A, B and A ∗, B∗.
A fixation of the invariants (60) leads to the relations

A∗ = QA · A · QT
A, B∗ = QB · B · QT

B.

where QA and QB are orthogonal tensors.
Fixation of the invariants (61) gives the next system of equation

A · ·
(
Q · B · QT − B

)
= 0, A2 · ·

(
Q · B2 · QT − B2

)
= 0,

tr

[(
A · Q · B · QT

)2
]

= tr
[
(A · B)

2
]
, (62)
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where
Q ≡ QT

A · QB.

From (62) it follows

Q = SA · SB ⇒ QB = QA · SA · SB,

where SA and SB are some elements of the tensors A and B correspondingly. Thus we have

A∗ = QA · SA · A · ST
A · QT

A, B∗ = QA · SA · B · ST
A · QT

A.

For any QA we may chose such element of symmetry SA that

det (QA · SA) = 1.
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Nonlinear Theory of Thin Rods∗

Abstract

Nonlinear theory of the rods is the oldest and, maybe, the most important theory
in continuum mechanics of solids. However there are some theoretical problems
which have no solution up to now. The report is devoted to discussion of the
dynamic theory of the thin spatially bent and naturally twisted rods. The suggested
theory includes all known variants of the theory of rods, but possesses wider branch
of applicability. A new method of construction of the elasticity tensors is offered and
their structure is established. To this end a new theory of the tensor symmetry in
space with two independent orientations is essentially used. For plane elastic curves
all modules of elasticity are determined. The significant attention in the report is
given to the analysis of some classical problems, including those from them, solution
of which leads to paradoxical results. In particular, it is in detail considered well-
known elastica by Euler and it is shown, that alongside with known equilibrium
configurations there are also dynamic equilibrium configurations. In this case the
form of an elastic curve does not vary, but the bent rod makes rotations around of
a vertical axis. Energy of deformation in this case does not vary. Let us note that
these movements are not movements of a rod as the rigid whole for the clamped end
face of the rod remains motionless. From this it follows, that the bent equilibrium
configuration in the Euler elastica is, in contrast to the conventional point of view,
unstable. On the other hand, this conclusion is not confirmed by experimental
data. Therefore there is a paradoxical situation which demands the decision. The
similar situation known under the name of the Nikolai paradox arises at torsion
of a rod by the boundary twisting moment. In this case experiment shows that
twisting moment produces stabilizing effect that is in the sharp contradiction with
the theoretical data. In the report it is shown what to avoid the specified paradoxes
it is possible at a special choice of the constitutive equation for the moment. It
appears that the moment should depend in the special form on angular velocity.
Last dependence is not connected with the presence (or absence) internal friction
in the rod.

∗Zhilin P.A. Nonlinear Theory of Thin Rods // Lecture at XXXIII Summer School – Conference
“Advanced Problems in Mechanics”, St. Petersburg, Russia, 2005.
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1 The rod theory and modern mechanics

The theory of thin rods has played outstanding role in the history of development of
mechanics and mathematical physics. In order to show the contribution of the theory of
thin rods to the development of natural sciences more clearly, let us point out only some
facts.

Birth of the ordinary differential equations. In 1691 Jacob Bernoulli has de-
rived the differential equation of equilibrium of a rope (string)

N ′ + ρF = 0. (1)

The equation (1) was the first differential equation in the history of a science.
Birth of the equations in partial derivatives. In 1742 Jacque D’Alembert has

derived the equation of vibrations of a string

∂2U

∂s2
−

1

c2

∂2U

∂2t2
= 0. (2)

The equation (2) was the first differential equation in partial derivatives. Development
of the methods of its solution has led to the creation of the theory of decomposition
of functions in series — Daniel Bernoulli and Leonard Euler.

Birth of the theory of bifurcation of the solutions of nonlinear differential
equations. In 1744 L. Euler has solved a problem on a longitudinal bending of the rod,
named later Euler’s Elastica, and found the beginning of the theory of bifurcations
and the theory of the eigenvalues of nonlinear operators.

Birth of a new mechanics and the proof of incompleteness of the Newton
mechanics. In 1771 L. Euler has derived a general equations of equilibrium of rods

N ′ + ρF = 0, M ′ + R ′ × N + ρL = 0. (3)

To derive the equations (3) it was required to Euler about 50 years of reflections. As
a result Euler has made one of the greatest opening in mechanics and physics, which
to the full extent is not realized by the majority of mechanics and physicists up to
present time. Namely, Euler has realized the necessity of the introduction of moments
as independent objects, which can not be in terms of the moment of force. That means,
firstly, necessity of the introductions of the new fundamental law of physics, expressed
by the second equation (3) and, secondly, the fundamental incompleteness of the Newton
Mechanics. Though L. Euler has made the determining step for introduction of the
moments, independent of forces, but the general definition of the moment has been given
rather recently by P.A. Zhilin.

Birth of the theory of stability of the nonconservative systems. In 1927
E.L. Nikolai has reported the results of the analysis of stability of the equilibrium con-
figuration of the rod under the action of the twisting moment. He has shown, that this
configuration is unstable at any as much as small value of the twisting moment (the
Nikolai Paradox). The scientists of that time were shocked by this result for it was in
sharp contrast with the conventional Euler’s concept of critical forces. Then P.F. Pap-
kovitch has specified, that the Nikolai problem deals with the nonconservative system.
Therefore it is not necessary to be surprised to the obtained result because it is possible
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of accumulation of the energy in system. The subsequent development of the theory of
stability of nonconservative systems has revealed also others surprising facts, for exam-
ple, destabilizing role of internal friction. In the report it will be shown, that paradox
of Nikolai is due to reasons which has no direct relation with the nonconservativeness of
system. Nevertheless, the theory of stability of nonconservative systems now is one of
the important branches of mechanics.

Birth of the symmetry theory in multi-oriented spaces. In 1977 P.A. Zhilin at
construction of the constitutive equations in the theory of rods and shells has found out,
that the application of the classical theory of symmetry leads to the absurd results. The
analysis has shown, that the reason of the impasse is that fact, that the theory of rods and
shells contain tensor’s objects that is defined in spaces with two independent orientations.
Therefore in such space there exist the tensors of four various types. The classical theory
of symmetry is applicable only to the so-called polar tensors, i.e. to objects, independent
of a choice of orientations in space. Thus it was necessary to develop the generalized
theory of symmetry, which is valid for tensors of any types. Let us note that without
this generalized theory of symmetry the correct construction of a general theory of rods
and shells is impossible.

Above only those facts have been marked which have affected and continue to influence
on the theoretical foundations of modern mechanics and mathematical physics. In the
report there is no need to speak about enormous value of the rod theory for decision
of actual problems of technics. Unfortunately, frameworks of the report do not allow to
tell about remarkable achievements of many researchers at the decision of the very much
interesting specific problems.

Unsolved questions of the rod theory. In the rod theory it is obtained a lot of
surprising and even paradoxical results which demand clear explanations. Spatial forms of
the rod motions are not almost investigated. Within the framework of the existing theory
of rods it is very difficult to investigate the important problems for related dynamics of
rods and, for example, rigid bodies as these two two important objects of mechanics are
stated on various and incompatible languages. The main obstacle in a way of overcoming
of all these difficulties is absence a general nonlinear theory of rods stated in language
convenient for applications. The first presentation of such theory is one of the purposes
of the report. Another, not less important, the purpose of the report is the discussion,
from positions of the submitted theory, of some classical problems of the rod theory and
revealing in them of the new circumstances latent in existing decisions. In particular, the
new interpretation of the Nikolai paradox based on the full analysis of the Euler elastica
will be given in the report. The author has solutions of a several new problems, but,
unfortunately, is forced to leave them behind frameworks of the report.

2 The model of rod

The model of thin rod is the directed curve, which is defined by fixation of the vector
r(s) and triple dm

{r(s), d1(s), d2(s), d3(s)}, dm · dn = δmn, 0 ≤ s ≤ l, (4)

where s is the length of the curve arc, l — the length of curve. The vector r(s) in (4)
determines the carrying curve with natural triple {t1 ≡ t, t2 ≡ n, t3 ≡ b = t× n}, where
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the vectors t, n and b are unit vectors of the tangent, normal and binormal respectively.
For natural triple one has

t ′
i = τ × ti, τ(s) = R−1

t (s)t(s) − R−1
c (s)b(s), (5)

where Rc is the radius of curvature and Rt is the radius of twisting, τ is the Darboux
vector. Thus, in each point of the curve the two triples are given: natural triple {t, n, b}

and additional triple {d1, d2, d3 = t}. The vectors (n, b) and (d1, d2) are placed in the
cross plane to the undeformed curve and determines the cross-section of the undeformed
rod, but, in general, does not coincide. In what follows the vectors (d1, d2) are principal
axes of inertia of the cross-section. The changing of the triple dk(s) under the motion
along the curve is determined by the vector q(s) such that

d ′
k(s) = q(s) × dk(s). (6)

It is easy to find the relation between q and τ

q =
(
ϕ ′ + R−1

t

)
t − R−1

c b = ϕ ′t + τ, (7)

where ϕ is called the angle the natural twisting of the rod.
The motion of the rod is defined by

r(s) → R(s, t); dk(s) → Dk(s, t)
or

R(s, t) = r(s) + u(s, t), Dk(s, t) = P(s, t) · dk(s), (8)

where u(s, t) is the displacement vector, P(s, t) is the turn-tensor. The translational
velocity and angular velocity are defined by

V(s, t) = Ṙ(s, t), Ṗ(s, t) = ω(s, t) × P(s, t), ḟ ≡ df/dt. (9)

If the turn-tensor P(s, t) is given, then

ω(s, t) = −
1

2

[
Ṗ · PT

]
×

, (a ⊗ b)× ≡ a × b. (10)

3 Fundamental laws of mechanics

The first and the second laws of dynamics by Euler have an almost conventional form

N ′(s, t) + ρ0F(s, t) = ρ0

(
V + Θ1 · ω

)·
, (11)

M ′ + R ′ × N + ρ0L = ρ0V × Θ1 · ω + ρ0

(
V · Θ1 + Θ2 · ω

)·
, (12)

where the underlined terms had been never taken into account, for the curved rods they
are important.

Let us write down the energy balance equation (George Green, 1839)

ρ0U̇ = N · (V ′ + R ′ × ω) + M · ω ′ + h ′ + ρ0Q, (13)
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Let the vectors E and Φ be the vector of extension-shear deformation and the vector of
bending-twisting deformation respectively. They are defined as

E = R ′ − P · t, P ′ = Φ × P. (14)

The Cartan equation

Ė − ω × E = V ′ + R ′ × ω, Φ̇ − ω × Φ = ω ′. (15)

Putting (15) into (13), we obtain the energy balance equation in the next form

ρ0U̇ = N ·
(
Ė − ω × E

)
+ M · (Φ̇ − ω × Φ) + h ′ + ρ0Q, (16)

4 Reduced equation of the balance equation

The force N and the moment M in the rod may be represented as superposition of the
elastic (Ne, Me) and dissipative (Nd, Md) terms

N = Ne(E, Φ,P) + Nd(s, t), M = Me(E, Φ,P) + Md(s, t).

Let the parameter ϑ(s, t) is the temperature of the rod measured by some thermome-
ter. That means that the temperature is the experimentally measured parameter. Let us
introduce a new function η called the entropy. Let us define this function by the equation

ϑη̇ = h ′ + ρ0Q + Nd ·
(
Ė − ω × E

)
+ Md · (Φ̇ − ω × Φ) (17)

Let us point out that such definition of the entropy does not need in distinction
between reversible and irreversible processes. Introduction of the entropy by the equality
(17) is possible for any processes. The equality (17) is called the equation of the heat
conduction.

Making use of (17) the energy balance equation (16) may be represented in the form

ρ0U̇ = Ne ·
(
Ė − ω × E

)
+ Me ·

(
Φ̇ − ω × Φ

)
+ ϑη̇. (18)

The equation (18) is called the reduced energy balance equation. Let us suppose
that

U = U(E, Φ,P, η).

It is clear that that the internal energy does not change under the superposition of rigid
motions. Let us consider the two motions: R(s, t), P(s, t) and R∗(s, t), P∗(s, t), which
are related by the equality

R∗(s, t) − R∗(s̃, t) = Q(α) · [R(s, t) − R(s̃, t)] , P∗(s, t) = Q(α) · P(s, t),

where Q(α) is the set of properly orthogonal tensors, s and s̃ are two any points of the
rod. It is easy to find that

E∗(s, t) = R ′
∗ − P∗ · t = Q(α) · E(s, t),
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Φ∗(s, t) = −
1

2

[
P ′

∗ · PT
∗
]
× = −

1

2

[
Q · P ′

∗ · PT
∗ · QT

]
× = Q(α) · Φ(s, t).

Thus the internal energy must satisfy the next equality

U(E∗, Φ∗,P∗, η) = U[Q(α) · E, Q(α) · Φ, Q(α) · P, η] = U(E, Φ,P, η). (19)

For the tensor Q(α) we may accept

d

dα
Q(α) = ζ(α) × Q(α), Q(0) = E, ζ(0) = ω(t).

Differentiating the equality (19) with respect to α and accepting α = 0, we have the
equation

−

(
∂U

∂E
× E +

∂U

∂Φ
× Φ

)
· ω +

(
∂U

∂P

)T

· · (ω × P) = 0. (20)

Besides we have

dU

dt
=

∂U

∂η
η̇ +

∂U

∂E
· Ė +

∂U

∂Φ
· Φ̇ +

(
∂U

∂P

)T

· · (ω × P) = 0.

Taking into account the equality (20) this equation may be rewritten as

dU

dt
=

∂U

∂η
η̇ +

∂U

∂E
·
(
Ė − ω × E

)
+

∂U

∂Φ
·
(
Φ̇ − ω × Φ

)
.

Putting this equality into (18) we obtain
(

∂ρ0U

∂E
− Ne

)
·
(
Ė − ω × E

)
+

(
∂ρ0U

∂Φ
− Me

)
·
(
Φ̇ − ω × Φ

)
+

+

(
∂ρ0U

∂η
− ϑ

)
η̇ = 0. (21)

The equation (21) must be valid for any processes and for arbitrary values of the vectors
Ė − ω ×E and Φ̇ − ω × Φ. It is possible if and only if the Cauchy-Green formulas are
valid

Ne =
∂ρ0U

∂E
, Me =

∂ρ0U

∂Φ
, ϑ =

∂ρ0U

∂η
. (22)

Besides accepting in (19) Q = PT we see that the intrinsic energy is the function of the
next argument

U = U(E×, Φ×, η), E× ≡ PT · E, Φ× ≡ PT · Φ. (23)

The vectors E× and Φ× are called the energetic vectors of deformation.
Axisymmetrical vibrations of a ring.

R(s, t) = [a + w(t)]n(s), P(s, t) = E ⇒ V = ẇ(t)n(s), ω = 0,

where a is the radius of undeformed ring. Let us suppose that

F = Nd = 0, L = Md = 0, Q = 0, ϑ = const, η = const.
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The principal axes of inertia of the cross-section of the ring do not coincide with the
vectors n and b

d1 = cosαn + sin αb, d2 = − sinαn + cosαb. (24)

Let us calculate the inertial terms in (11) and (12)

ρ0V̇ = ρ̃Fẅn = −ρ̃Faẅ t ′, ρ0V̇ · Θ1 = −ẅn× d = −λẅ t = −aλẅn ′,

where
λ = ρ̃

sin 2α

2a

∫
(F)

(x2 − y2)dxdy.

The equations of motion (11) and (12) takes a form

[N(s, t) + ρ̃Faẅ(t)t(s)] ′ = 0,

[
M −

ρ̃F

24
(H2 − h2) sin 2αẅ(t)n(s)

] ′
+

(
1 +

ẅ(t)

a

)
t × N = 0.

From this it follows

N(s, t) = −ρ̃Faẅ(t)t(s), M =
ρ̃F

24
(H2 − h2) sin 2αẅ(t)n(s). (25)

The first equation in (25) gives the equation of nonlinear oscillator

ẅ(t) + f(w) = 0,

where the function f(w) is determined by the intrinsic energy. From the eq. (25) the
universal constraint

24aM · n + (H2 − h2) sin 2αN · t = 0, (26)

follows. This constraint must be valid for any definition of the intrinsic energy. The
existing versions of the rod theory do not satisfy constraint (26).

Paradox. It is obvious that the tensor of mirror reflection Q = E − 2 t ⊗ t must
belong to the symmetry grope for all quantities in this problem. However for the vector
N we have Q · N = −N �= N, i.e. Q does not belong to the symmetry grope of N. The
classical theory of symmetry does not work!

5 The specification of the internal energy

In what follow we shall consider the isothermal processes. The intrinsic energy may be
defined as quadratic form

ρ0U(E×, Φ×) = U0 + N0 · E× + M0 · Φ×+

+
1

2
E× · A · E× + E× · B · Φ× +

1

2
Φ× · C · Φ× + Φ× · (E× · D) · Φ×, (27)
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where the vectors N0, M0, second rank tensors A, B, C and third rank tensor D are
defined in the reference configuration and are called the elasticity tensors.

The main problem is to find the elasticity tensors. If we take into account only
underlined term in (27), then we obtain the classical theory of rods. In some modern
versions of the rod theory the twice underlined term is taken into account. All other terms
are absent in the existing theories. However, as it will be shown below, no one term in
the representation (27) can not be omitted without contradictions. The representation
(27) may be rewritten in terms of E and Φ

ρ0U(E×, Φ×) = U0 + Ñ0 · E + M̃0 · Φ+

+
1

2
E · Ã · E + E · B̃ · Φ +

1

2
Φ · C̃ · Φ + Φ · (E · D̃) · Φ, (28)

where

(Ñ0, M̃0) = P · (N0, M0), (Ã, B̃, C̃) = P · (A, B, C) · PT , D̃ =
3⊗
1
P � D

are defined in the actual configuration. Here and in what follows the notation

k⊗
1
P� S ≡ k⊗

1
P� (Si1...ikei1

⊗ . . . ⊗ eik

) ≡ Si1...ikP · ei1
⊗ . . . ⊗ P · eik

is used for the tensor S of the rank k.
Let us consider the generalized theory of the tensor symmetry [1]. In our case oriented

3d-space E
(o)
3 is the direct sum of oriented 2d-space E

(o)
2 and oriented 1d-space E

(o)
1

E
(o)
3 = E

(o)
1 ⊕ E

(o)
2 .

Orientations in E
(o)
3 and E

(o)
1 may be chosen independently.

Definition: objects that do not depend on the choice of orientation in E
(o)
3 and E

(o)
1

are called polar ones; objects that depend on the choice of orientation in E
(o)
3 and do

not depend on the choice of orientation in E
(o)
1 are called axial ones; objects that do not

depend on the choice of orientation in E
(o)
3 but depend on the choice of orientation in

E
(o)
1 are called polar t-oriented ones; objects that depend on the choice of orientation both

in E
(o)
3 and in E

(o)
1 are called axial t-oriented ones.

In theory under consideration: ρ0, ϑ, η, U, r, R, u, F, ac, d, P, Θ2, A, C are polar
objects; Rt, ψ, ω, L, Θ1, B are axial objects; Rc, N0,N, E, E×, D are polar t-oriented
objects; q, τ, M0,M, Φ, Φ× are axial t-oriented objects. Let us note that the differ-
entiation with respect to s changes the type of an object. For example, N is the polar
t-oriented vector but N ′ is the polar vector.

Definition: the k-rank tensor S ′ is called orthogonal transformation of the k-rank
tensor S and is defined as

S ′ ≡ (t · Q · t)β(det Q)α
k⊗
1

Q� S, (29)
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where α = 0, β = 0, if S is a polar tensor; α = 1, β = 0, if S is an axial tensor;
α = 0, β = 1, if S is a polar t-oriented tensor; α = 1, β = 1, if S is an axial t-oriented
tensor.

Definition: the set of the orthogonal solutions of the equation

S ′ = S, (30)

is called the symmetry grope of the tensor S, where S is given and orthogonal tensors Q
must be found. The S ′ is defined by (29).

Now we are able to explain paradox of the previous section. Vector N is a polar
t-oriented vector. Therefore its symmetry grope must be found from the equation

(t · Q · t)Q · N = N.

It is easy to see that the tensor of mirror reflection Q = E − 2 t ⊗ t belongs to the
symmetry grope of N accordingly to the definition (30).

The requirements of symmetry are necessary tools. However they are not sufficient
in order to construct the elasticity tensors. The latter depend on many factors. Even in
the simplest case, when the rod made of isotropic material, the elasticity tensors depend
on the shape of rod, i.e. on vectors Darboux τ and q or, what is the same, on vector τ

and on the intensity of angle of natural twisting ϕ ′. If the diameter of the cross-section
is chosen as an unit of length, then the modulus of the vector τ is a small quantity. By
this reason it is possible to use the decomposition

f = f0 + f1 · τ + τ · f2 · τ,

where f is any tensor of elasticity.
Making use of this technics one may obtain

A = A1d1 d1 + A2d2 d2 + A3d3 d3 +
A12

Rt

(d1 d2 + d2 d1)+

+
1

Rc

[A13 (d1 d3 + d3 d1) cosα + A23 (d2 d3 + d3 d2) sin α] , (31)

where the meaning of the angle α is defined by (24), d3 ≡ t, ab ≡ a ⊗ b. The represen-
tation for C

C = C1d1 d1 + C2d2 d2 + C3d3 d3 +
C12

Rt

(d1 d2 + d2 d1)+

+
1

Rc

[C13 (d1 d3 + d3 d1) cosα + C23 (d2 d3 + d3 d2) sin α] . (32)

If the natural twisting is absent, then

A12 = A13 = A23 = 0, C12 = C13 = C23 = 0.
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A general representation for B

B = ϕ ′ B0 t t +
1

Rt

[B1d1d1 + B2d2d2 + B3t t + ϕ ′ (b1d1d1 + b2d2d2) × t] +

+
1

Rc

[(B13d1 sin α + B23d2 cosα) t + t (B31 d1 sin α + B32d2 cosα)] +

+
ϕ ′

Rc

[(b13d1 cosα + b23d2 sin α) t + t (b31d1 cosα + b32d2 sin α)] . (33)

If the natural twisting is absent, then ϕ ′ = 0. Not all elastic modulus in (33) are
important. In order to see that fact let us write down the expression

E · B = ϕ ′ B0 εt +
1

Rt

[B1Γ1d1 + B2Γ2d2 + B3ε t + ϕ ′ (b1Γ1d1 + b2Γ2d2) × t] +

+
1

Rc

[(B13Γ1 sin α + B23Γ2 cosα) t + ε (B31 d1 sin α + B32d2 cosα)] +

+
ϕ ′

Rc

[(b13Γ1 cosα + b23Γ2 sin α) t + ε (b31d1 cosα + b32d2 sin α)] . (34)

Because the shear deformations Γ1, Γ2 are as a rule small then instead of (34) one may
write

E · B = ϕ ′ B0 εt +
ε

Rt

B3 t+

+
ε

Rc

(B31 d1 sinα + B32d2 cosα) +
εϕ ′

Rc

(b31d1 cosα + b32d2 sinα) . (35)

Thus we see that only modulus B0, B3, B31, B32, b31, b32 may be important. More over
it is clear from physical sense that modulus b31, b32 may be ignored as well. Thus
instead of (33) one may write down

B = ϕ ′ B0 t t +
B3

Rt

t t +
1

Rc

t (B31 d1 sin α + B32d2 cosα) .

This technology does not suit in order to find the vectors N0 and M0, which linearly
depend on the external loads. As a rule these vectors are not important.

6 The determination of the elastic modulus

At the present time all elastic modulus have been found. Let us show how to find the
elastic modulus A1, A2, A3. It is easy to prove the representations

A3 = E F, A1 = k1 G F, A2 = k2 G F, (36)

where E is the Yang modulus, G = E/2(1 + ν) is the shear modulus of the material of
rod.
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Dimensionless coefficients k1 and k2 in (36) are called the shear correction factors.
There are many different values for these factors, but all of them must satisfy the in-
equality

π2/12 ≤ k1, k2 < 1.

In order to illustrate the determination of shear correction factor let us consider the
next dynamics problem of 3d-theory of elasticity for the body occupying the domain:
−h/2 ≤ x ≤ h/2, −H/2 ≤ y ≤ H/2, 0 ≤ z ≤ l. Let us accept that i = d1, j = d2, k = t.
Let the lateral surface of the body is free. The boundary conditions are determined as

z = 0, l : u(3) · d1 = u(3) · d2 = 0, t · T · t = 0,

where u(3) and T are the vector of displacement and the stress tensor respectively. Let
us consider the shear vibrations of the form

u(3) = W eiωt sinλx t, T = GλWeiωt cosλx(t d1 + d1 t), λ = (2k + 1)π/h,

where ω is the natural frequency of the body. These expressions satisfy the boundary
conditions. To satisfy the equations of motion we have to accept

∇ · T = ρ̃ü(3) ⇒ ω2 =
G

ρ̃

(2k + 1)2π2

h2
, k = 0, 1, 2, . . . (37)

Let us consider this in the framework of the beam theory. We have

u = 0, ψ = ψ2d2 = const, N = N1d1, M = 0, N0 = 0, M0 = 0;

e ≡ u ′ + t × ψ = −ψ2d1, κ ≡ ψ ′ = 0, N = −A1ψ2d1, M = 0.

The equation of motion takes a form

N ′(s, t) = 0, −A1ψ2d2 = Θ2ψ̈2d2 ⇒ ω2 = A1/Θ2, Θ2 = ρ̃F h2/12. (38)

Comparing the frequencies found in terms of the three-dimensional theory (37), and
the frequency found under the theory of beam (38), we see huge distinction. The three-
dimensional theory gives the spectrum of the natural frequencies while the beam theory
gives only one frequency. It is not surprising, for area of applicability of the three-
dimensional theory is much more wider than area of applicability of the beam theory.
The beam theory gives a good description only low-frequency vibrations. Let us note,
that shift vibrations are already high-frequency vibrations, their frequencies trend to
infinity at h → 0. While frequencies of bending vibrations trend to zero at h → 0, and
frequencies of longitudinal vibrations are limited at h→ 0. Therefore it is quite natural,
that the beam theory does not allow to describe all shift spectrum, but it can describe
the lowest frequency from a spectrum (37). For this end it is enough to accept

A1

Θ2

=
G

ρ̃

π2

h2
⇒ A1 =

π2

12
GF ⇒ k1 =

π2

12
.

It may be proved that k1 = k2.
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It is useful to consider the certain seeming paradox connected to definition of shear
coefficient. We shall try to determine it from the exact decision of a static problem on
pure shift of a beam, which is given by formulas

T = τ (t d1 + d1 t), Gu(3) = τ x t ⇒
⇒ N = τ Fd1, M = 0, u = 0, G ψ = −τd2.

From the other hand we have

N = A · (t × ψ) ⇒ τ F = −A1 d2 · ψ ⇒ k1 = 1. (39)

Namely this value of shear coefficient was obtained by M. Rubin (2003). His arguments
are based on the solution (39). Thus we obtain a theoretical paradox: from two exact
solution we obtain two different values of shear coefficient. The existing beam theory are
not able to explain this paradox.

In fact the solution of this paradox is very simple. Let us consider the expression
(27). It contains the vectors N0 and M0, which are linear functions of loads acting on
lateral surface of beam. Because of this the equality (39) must be written as

N = N0 + A · (t× ψ) ⇒ N0 = τ F (1 − k1)d1.

Therefore the problem on pure shear does not allow to calculate the shear coefficient.
The elastic modulus C3, C1, C2 are well known

C1 = E J1, C2 = E J2, J1 ≡
∫

(F)

y2dxdy, J2 ≡
∫

(F)

x2dxdy, (40)

C3 = G Jr, Jr = 2

∫
(F)

U(x, y)dxdy, �U = −2, U = 0 on ∂F. (41)

Let us consider the tensor of elasticity B. In known versions of the rod theory we
have

B31 = 0, B32 = 0, B3 = 0.

However the representation (34) and universal equality (26) it follows

B32 = EJ4 + B31, J4 ≡
∫
(x2 − y2)dxdy �= 0. (42)

Thus the conditions B32 = B31 = 0 are impossible. The next formulas may be proved

B0 = E (J1 + J2 − Jr) ≥ 0, B32 = C2, B31 = C1. (43)

The above presented rod theory is consistent nonlinear theory with very wide branch
of applicability. At present author does not know the problems when this theory leads
to some contradictions or mistakes.
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7 The longitudinal-twisting waves in the rod

Let us consider the longitudinal-twisting waves in the naturally twisted beam.

∂2u

∂s2
−

1

c2
l

∂2u

∂t2
+

ϕ ′B0

EF

∂2ψ

∂s2
+

1

c2
l

Ft = 0, c2
l =

E

ρ
. (44)

∂2ψ

∂s2
−

1

c2
t

∂2ψ

∂t2
+

ϕ ′B0

GJr

∂2u

∂s2
+

ρ F

GJr

Lt = 0, c2
t =

GJr

ρ Jp

. (45)

The solution of the system (44)–(45) may be represented in terms of solutions of the
wave equations

∂2v

∂s2
−

1

Ω1

∂2v

∂t2
= 0,

∂2ϑ

∂s2
−

1

Ω2

∂2ϑ

∂t2
= 0, (46)

where Ω1 and Ω2 are some parameters, which must be found. A general solution of the
system (44)–(45) has a form

u(s, t) = v(s, t) +
γ1c2

l

Ω2 − c2
l

ϑ(s, t), ψ(s, t) = ϑ(s, t) +
γ2c2

t

Ω1 − c2
t

v(s, t), (47)

where

γ1 ≡ ϕ ′B0

EF
, γ2 ≡ ϕ ′B0

GJr

,

v and ϑ are solutions of (46). The parameters Ω1 and Ω2 are the roots of equation

Ω2
1 − (c2

l + c2
t )Ω1 + (1 − γ1 γ2)c2

l c2
t = 0, Ω2 < c2

t , Ω1 > c2
l , c2

t < c2
l .

So, the presence of natural twisting in a beam does not change a character of wave
process in the beam. It still waves without a dispersion, but the presence of natural
twisting changes velocities of wave propagation in a beam. The longitudinal - torsional
wave is the solution of the first equation from (46), and the velocity of its propagation√

Ω1 is bigger than the velocity of propagation of longitudinal wave in a beam without
natural twisting. The torsional-longitudinal wave is the solution of second equation from
(46), and the velocity of its propagation

√
Ω2 appears below velocity of propagation of

a wave of torsion in a beam without natural twisting.

8 The twisting of a beam by the dead moments

In order to show how to work with presented rod theory let us consider the task of twisting
of beam by the dead moment when external surface loads in (11)–(12) are absent, i.e.
F = 0, L = 0. The equation of equilibrium

N ′(s, t) = 0, M ′ + R ′ × N = 0. (48)

The boundary conditions

s = 0 : R = 0, P = E; s = l : N = 0, M = L ≡ Lm, (49)
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where L = const and m is unit constant vector. Solution of static equations (48) taking
into account boundary conditions (49)

N = 0, M = L = Lm. (50)

Cauchy-Green relations of naturally twisted beam

N = P · A · PT · E + ϕ ′ B0(t · PT · Φ)P · t,

M = P · C · PT · Φ + ϕ ′ B0(E · P · t)P · t,
where ϕ ′ is the natural twisting of beam: ϕ = 2πs/a, a is a length on which the cross-
section is turning by the angle 2π. We see that

E = −

(
ϕ ′ B0

A3

)
(Φ · P · t)P · t ⇒ R ′ =

(
1 −

ϕ ′ B0

A3

Φ · P · t
)

P · t, (51)

L = P · [Ctt t + C1d1 d1 + C2d2 d2] · PT · Φ, Ct ≡ C3

(
1 −

ϕ′2B2
0

C3 A3

)
. (52)

Let us accept that C1 = C2. Then from (52) it follows

Φ = P · [C−1
t t t + C−1

1 (E − t t)] · PT · L, P ′ = Φ × P. (53)

The system (53) has a first integral

Φ · L = L · P · [C−1
t t t + C−1

1 (E − t t)] · PT · L = const. (54)

The energy integral (54) is the constraint on the turn-tensor P. A general solution of
(54) has a form

P(t) = Q(αm) · Q(β t), (55)

where notation
Q(γp) ≡ (1 − cosγ)p p + cosγE + sin γ p× E

is used for rotation by the angle γ around unit vector p. For any α(s) and β(s) the
energy (54) keeps a constant value. Making use of (55), the system (53) rewrite in a
form

Φ = Q(αm) · [C−1
t t t + C−1

1 (E − t t)] · L, Φ = Q(αm) · (α ′ m + β ′ t)
or

α ′(s)m + β ′(s) t = L [C−1
t t t + C−1

1 (E − t t)] · m = L [(C−1
t − C−1

1 ) cos σ t + C−1
1 m].

The solution of this system

α ′(s) = LC−1
1 , β ′(s) = L (C−1

t − C−1
1 ) cosσ, cosσ ≡ m · t. (56)

From (56) it follows

α(s) = LC−1
1 s, β(s) = L cosσ (C−1

t − C−1
1 ) s.
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It is easy to calculate

Φ · P · t =
L cos σ

Ct

. (57)

This is a variation of twisting of the beam

q̃ · P · t = ϕ ′ + Φ · P · t.
The axis extension follows from (51)

ε = E · P · t = −
ϕ ′ B0

A3

L cosσ

Ct

. (58)

If ϕ ′ L > 0, then ε < 0. If ϕ ′ L < 0, then ε > 0.
Let us calculate the Darboux vector, curvature and twisting of deformed beam

τ̃ = α ′ cosσ t̃ − α ′ sin σ b̃ = α ′m ⇒ R̃−1
c = α ′ sin σ, R̃−1

t = α ′ cosσ.

In order to find the actual configuration of the beam it is necessary to integrate (51)

R = (1 + ε)

[
s cosσm +

C1

L
Q
(

Ls

C1

m
)

· (t × m) −
C1

L
(t × m)

]
.

The vector in square brackets of this expression, describes a spiral on the cylinder of
radius R0 = C1 sinσ/|L|. The axis of the cylinder is spanned on a vector m and passes
through the point determined by a vector

(1 + ε)C1(π cosσm − 2t × m)/L.

The length of one coil of a spiral is equal 2π C1/|L|. The step h of a spiral is equal l cosσ.

9 Elastica of Euler (1744)

Mathematical statement
N ′ = 0, M ′ + R ′ × N = 0; (59)

M = P · C · P · Φ = (C3 − C1)(t · PT · Φ)P · t + C1Φ, (60)

where N is defined by equation of equilibrium. Boundary conditions

s = 0 : R = 0, P = E; s = l : N = −Nt, M = 0. (61)

Kinematic relations
R ′ = P · t, P ′ = Φ × P, |R ′| = 1.

The problem (59)–(61) has an obvious solution

R(s) = s t, P = E, N = −Nt, M = 0. (62)

As it was shown by Euler the solution (62) is unique solution if N ≤ Ncr. If N > Ncr,
then there are another solutions. It is possible to prove that all this solutions are plain
curves. Beside for the vector the next representation

Φ = R ′ × R ′′ = −R−1
c b ≡ ψ ′(s)b, b ≡ b̃, ψ ′(s) ≡ −R−1

c (s) (63)
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may be found. In such a case the turn-tensor has a form

P = Q(ψb) ⇒ R ′ = cosψ(s) t + sinψ(s)b. (64)

Thus we have
N = −Nt, M = P · C · P · Φ = C1 ψ ′(s)b. (65)

For determination ψ(s) we have well-known boundary value problem

C1ψ ′′ + N sin ψ = 0, ψ(0) = 0, ψ ′(l) = 0. (66)

If

N > Ncr ≡ π2C2

4l2
,

then (66) has nontrivial solutions. The exact solution of (66) is well-known. Let us show
the approximate solution for small values of γ ≡ 1 −

√
Ncr/N > 0

ψ(s) = ψl sin ϑ = 4

(√
N

Ncr

− 1

)1/2

sin
[πs

2l
+

γ

2
sin

πs

l

]
. (67)

Let’s sum up. If longitudinal stretching force is applied to the free end of a beam, then
there is only one rectilinear equilibrium configuration. The situation varies, if on a beam
acts compressing force. In this case always there is a rectilinear equilibrium configuration,
which is determined by the following expressions

R(s) = (1 − N/A) st, P = E, N = −Nt, M = 0. (68)

If the module of compressing force N exceeds value Euler’s critical force Ncr, then there
is one more solution submitted by the formula (67). Intuitively clearly, that at N > Ncr

the second solution is realized. The first solution will be unstable.
In the literature [2] at judgement about stability of an equilibrium configuration usu-

ally use the energetic reasons. Namely, the stable configuration is supposed to be those
that has smaller energy. Strictly speaking, comparison of energies of equilibrium configu-
rations have no the direct relation to concept of stability. An equilibrium configuration of
conservative system is steady, if its potential energy has an isolated local minimum, which
is not connected to energy of other equilibrium configuration. Nevertheless, from two
possible equilibrium configurations the Nature if it is possible, chooses a configuration
with smaller energy. Therefore in Euler’s elastica it supposed that the bent configuration
is stable, as potential energy in this case is less [2]. Nevertheless, a such arguments in
Euler’s elastica are not valid. The matter is that in a considered case a minimum of
energy is not isolated. Actually we have family of the equilibrium bent configurations,
and all of them possess the same energy. Really, the received decision allows to find an
angle of turn unequivocally ψ around of a vector of a binormal b, but the vector b has
not been determined uniquely manner, for it is possible rotate b around t

b = Q (ϕ(t)t) · b0,
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where b0 is an arbitrary fixed vector orthogonal t; ϕ(t) is the arbitrary angle of turn
around t. From this it follows

P(s) = Q(ϕt) · Q(ψb0) · QT (ϕt) ⇒ P
∣∣
s=0

= E;

R ′ = Q(ϕt) · [cosψ(s) t + sin ψ(s)b0] .

If ϕ depends on time, then an angular velocity may be calculated as [3]

ω = ϕ̇ [(1 − cosψ) t − sin ψb× t] , ω
∣∣
s=0

= 0.

Thus, if in Euler’s elastica we give to the bent beam small angular velocity, then it will
slowly rotate around of the vector t, running all set of equilibrium configurations. And for
this it is not required of application of the external moment. It is necessary to emphasize,
that we do not mean the rotations of the beam as the rigid whole. For example, the
clamped end of a beam does not turn, for at s = 0 the turn-tensor becomes unit tensor
for any value of ϕ. In fact the beam does not resist to special kinds of deformation,
that for real beam does not correspond to the reality. Let’s note that mentioned fact
is present for any form of specific energy of a beam. The only important requirement
is that the specific energy must be transversally isotropic. In particular, the marked
feature explains the so-called Nikolai paradox [4]. Nikolai shows that the equilibrium
configuration of a beam loaded by dead (or following) moment, is unstable for arbitrary
small value of moment. This result is in sharp contradiction with experimental data. It
is supposed that the Nikolai paradox is due to nonconservativity of problem. However
this explanation is unsatisfactory, for it is easy to show, that the Nikolai paradox exists
in a problem on twisting of a beam by the potential (conservative) moment.

10 Stationary rotations in the Euler elastica

Below the Euler elastica will be examined in dynamic statement. The equation of motion

N ′′ = ρ FR̈ ′, M ′ + R ′ × N = 0, M = C1 R ′ × R ′′, R ′ = P · t. (69)

The boundary conditions (61)

s = 0 : R = 0, P = E, N ′ = 0; s = l : N = −Nt, M = 0. (70)

Let’s look for solution of the task (69)–(70) in a form

P(s, t) = Q [ϕ(t)t)] · Q [ψ(s)e)] · QT [ϕ(t)t)] , e · t = 0, (71)

where e is the constant unit vector. The vector of bending-twisting Φ corresponding to
the turn-tensor (71)

Φ = ψ ′(s)Q [ϕ(t)t)] · e = ψ ′(s)e∗, e∗(t) ≡ Q [ϕ(t)t)] · e. (72)

Besides there are formulas

R ′ = cosψ(s) t + sin ψ(s) e∗(t) × t, R̈ ′ = sin ψ(s)
(
ϕ̈e∗(t) − ϕ̇2e∗(t) × t

)
.
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For vector N may be used decomposition

N = −Nt + Q∗e∗ + Qe∗ × t, Q ′
∗(0, t) = Q ′(0, t) = 0, Q∗(l, t) = Q(l, t) = 0.

Substituting these expressions into the first equation from (69) one will get

Q ′′ = −ρ F ϕ̇2 sin ψ, Q ′′
∗ = ρ F ϕ̈ sin ψ. (73)

The vector of moment is expressed as

M = C1 R ′ × R ′′ = C1 ψ ′e∗.

The second equation from (69) is equivalent to

C1ψ ′′ + N sinψ + Q cosψ − Q∗ sinψ = 0, Q∗ = 0. (74)

From this it follows that in the Euler elastica only the stationary rotations are possible

ϕ̈ = 0 ⇒ ϕ̇ ≡ ω = const. (75)

Thus we obtain the next nonlinear boundary value problem

Q ′′ = −ρ Fω2 sin ψ, C1ψ ′′ + N sinψ + Q cosψ = 0; (76)

s = 0 : Q ′(0) = 0, ψ(0) = 0; s = l : Q(l) = 0, ψ ′(l) = 0. (77)

The problem (76)–(77) is difficult to find the exact solution. However it is easy to find
the approximated solution for small value of ω2. Let’s use the decomposition

ψ(s) = ψst(s) + ϑ(s), |ϑ(s)| 
 1,

where ψst(s) is the solution of the static task at N > Ncr. In such a case instead of
(76)–(77) we obtain

Q ′′ = −ρ Fω2 sin ψst, C1ϑ ′′ + (N cosψst)ϑ = Q cosψst; (78)

s = 0 : Q ′(0) = 0, ϑ(0) = 0; s = l : Q(l) = 0, ϑ ′(l) = 0. (79)

The problem (78)–(79) has unique solution.
Thus, the account of forces of inertia does not change a conclusion about presence

rotating “equilibrium” configurations. That means, that the bent equilibrium configu-
rations in the Euler elastica are unstable, for the turned bent configuration is not any
more close to the original configurations.

It is necessary to emphasize, that experiment does not confirm a conclusion about
presence rotating “equilibrium” configurations. The rough experiment which has been
carried out by the author, has shown, that if bent equilibrium configuration slightly to
push, low-frequency vibrations start, but not rotations.
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11 The Nikolai paradox

11.1 Potential moment

Let us introduce a concept of potential moment. This concept is necessary for a statement
and an analysis of many problems. Nevertheless a general definition of potential moment
is absent in the literature.

Definition: A moment M(t) is called potential, if there exists a scalar function U(θ)
depending on a turn-vector such that

M · ω = −U̇(θ) = −
dU

dθ
· θ̇. (80)

One may obtain the equality

θ̇ (t) = Z (θ) · ω (t) , (81)

where
Z (θ) = E −

1

2
R +

1 − g

θ2
R2, g =

θ sin θ

2 (1 − cosθ)
, θ = |θ|. (82)

The tensor Z (θ) will be called the integrating tensor in the following. The equality (80)
can be rewritten in the form (

M +
dU

dθ
· Z
)

· ω = 0.

From this it follows
M = −ZT (θ) · dU

dθ
+ f (θ, ω) × ω, (83)

where f (θ, ω) is an arbitrary function of vectors θ and ω.

Definition: A moment M is called positional, if M depends on the turn-vector θ

only. For the positional moment M (θ) we have

M (θ) = −ZT (θ) · dU (θ)

dθ
. (84)

Definition: The potential U (θ) is called transversally isotropic with an axis of sym-
metry k, if the equality

U (θ) = U [Q (αk) · θ]

holds for any turn-tensor Q (αk) .

It can be proved that a general form of a transversally isotropic potential can be
expressed as a function of two arguments

U (θ) = F
(
k · θ, θ2

)
. (85)

For this potential one can derive the expression

M (θ) = −2
∂F

∂ (θ2)
θ −

∂F

∂ (k · θ)
ZT · k. (86)
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There exists the obvious identity

(E − Q (θ)) · θ =
(
E − QT

) · θ = 0 =⇒ (a − a′) · θ = 0

for arbitrary a, a′ = Q · a. Taking into account this identity, we may obtain

(
E − QT (θ)

) ·M =
∂F

∂ (k · θ)
k × θ.

Multiplying this equality by the vector k we obtain

(k − k′) · M = 0. (87)

For the isotropic potential, equality (87) holds for any vector a. Sometimes equality (87)
is very important.

11.2 The equations of motion of a rigid body on elastic founda-
tion

The inertia tensor is supposed to transversally isotropic

A = A1 (E − k⊗ k) + A3k ⊗ k, d3 = k, A1 = A2. (88)

The position of a body at the instant t is called the actual position of a body. The motion
of the body can be defined either by the turn-tensor P (t) or by the turn-vector θ (t)

P (t) = Q (θ (t)) .

The tensor of inertia A(t) in the actual position is determined by

A(t) = P (t) · A · PT (t) . (89)

If the tensor A is transversally isotropic, this results in

A(t) = A1 (E − k′ ⊗ k′) + A3k′ ⊗ k′, k′ = P · k. (90)

The kinetic moment of the body can be expressed in two forms. In terms of the left
angular velocity we obtain

L = P · A · PT · ω = A1ω + (A3 − A1) (k′ · ω)k′. (91)

In terms of the right angular velocity the kinetic moment has the form

L = P · A · Ω = P · [A1Ω + (A3 − A1) (k · Ω)k] . (92)

Let us note that
k′ · ω = k · PT · ω = k · Ω. (93)

An external moment M acting on the body can be represented in the form

M = Me + Mext,



Nonlinear Theory of Thin Rods 247

where Me is a reaction of the elastic foundation and Mext is an additional external
moment. The elastic moment Me is supposed to be positional one

Me = −ZT (θ) · dU (θ)

dθ
. (94)

The scalar function U(θ) is called the elastic energy. In the following, the elastic founda-
tion is supposed to be transversally isotropic. Then the elastic moment can be represented
in form (86), i.e.

Me (θ) = −C
(
θ2,k · θ

)
θ − D

(
θ2,k · θ

)
ZT (θ) · k, (95)

where the unit vector k is placed on the axis of isotropy of the body in the reference
position, and

C = 2
∂

∂ (θ2)
U
(
θ2,k · θ) , D =

∂

∂ (k · θ)
U
(
θ2,k · θ) . (96)

For an external moment Mext let us accept the expression

Mext = −ZT (θ) · dV (θ)

dθ
+ Mex, (97)

where the first term describes the potential part of the external moment.
The second law of dynamics by Euler can be represented in two equivalent forms. In

terms of the left angular velocity we find from L̇ = M

[
P (θ) · A · PT (θ) · ω

]·
+ ZT (θ) · d (U + V)

dθ
= Mex. (98)

This equation has to be completed by the left Poisson equations

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) . (99)

In terms of the right angular velocity, the model (98)–(99) can be represented as

A · Ω̇ + Ω × A · Ω + Z (θ) · d (U + V)

dθ
= PT (θ) · Mex, (100)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) . (101)

11.3 The regular precession

Let us consider a body with a transversally isotropic tensor of inertia. The elastic foun-
dation is supposed to be transversally isotropic as well. The equations of motion are
given by expressions (98), (99) and expression (95) for the elastic moment:

[A1ω + (A3 − A1) (k′ · ω)k′]· + Cθ + DZT · k = 0, k′ = P · k, (102)

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) , (103)
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where the functions C and D are defined by (96). We assume a particular solution of
system (102), (103) to be represented in the form

θ = ϑp′, p′ = Q (ψk) · p, p · k = 0, P = Q (ϑp′) , (104)

where the motion (104) is called a regular precession if

ϑ = const, ψ̇ = const ⇒ θ̇ = ψ̇k × θ. (105)

The left angular velocity is given as

ω = Q (ψk) · ω0, ω0 = ψ̇ [(1 − cosϑ)k + sinϑk × p] = const. (106)

We see that the angular velocity vector ω is a precession of the vector ω0 around the
axis k orthogonal to the turn-vector:

θ · ω = θ · Ω = 0, k · θ = 0.

In addition, let us accept the restriction

D
(
θ2,k · θ

) ∣∣
k·θ=0

=
∂

∂ (k · θ)
U
(
θ2,k · θ

) ∣∣
k·θ=0

= 0,

which is satisfied for most kinds of elastic energy. Then we obtain from Eq. (102) for
the assumed solution

ψ̇2 =
C
(
ϑ2, 0

)
ϑ

sin ϑ [A3 (1 − cosϑ) + A1 cosϑ]
. (107)

11.4 The inertia elastic foundation.

Let us consider the inertia elastic foundation. In such a case instead of (95) we shall get

Me (θ) = −C
(
θ2,k · θ

)
θ − D

(
θ2,k · θ

)
ZT (θ) · k − µθ × ω. (108)

Instead of (102)–(103) we obtain

[A1ω + (A3 − A1) (k′ · ω)k′]· + Cθ + DZT · k + µθ × ω = 0, (109)

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) , k′ = P · k. (110)

It is to show that the regular precession is impossible. The angle of nutation tends
to zero and the Nikolai paradox is impossible.
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A Micro-Polar Theory for Piezoelectric Materials∗

Abstract

Theory of the piezoelectric materials had been developed many years ago. There exist a
several theories of the piezoelectricity. All of them lead to the very complicated equations.
The exact solutions of these equations may be found only for very particular cases. By this
reason it is not easy to compare theoretical and experimental results. At the present time
it seems to be possible to say that there is no qualitative discrepancies between theory and
experiments. From the pure theoretical point of view in the theory of the piezoelectricity there
are some serious problems. It was supposed that the stress state of the piezoelectric material
can be described by means of the symmetrical stress tensor. However some piezoelectric
materials are the dipole crystals. In such a case the rotation degrees of freedom must be
taken into account. It means that the theory of the piezoelectric materials must be constructed
on the base of the micro-polar continuum. The theory of such a kind is presented in the
report. The basic equations are derived from the fundamental laws of Eulerian mechanics
and contain two unsymmetrical stress tensors. The theory presented in the report differs from
conventional theory very significantly. However under some assumptions this theory may be
reduced to the classical one. The theory was tested on some simple problems and results were
compared with classical ones.

1 Classical set of equations

Here we briefly present main equations of the classical theory.
Equation of motion:

∇ · τ + ρF = ρü, (1)

where τ = τT is the symmetric stress tensor, ρ is the mass density, u is the displacement vector.
Poisson equation:

∇ · D = 0, ∇ · E ′ = 0, (2)

where D = E ′ + 4πP is the vector of electric displacement density, E ′ is the vector of electric
field intensity in vacuum, P is the vector of density of induced polarization.

∗Zhilin P.A., Kolpakov Ya.E. A Micro-Polar Theory for Piezoelectric Materials // Lecture at XXXIII Summer School
– Conference “Advanced Problems in Mechanics”, St. Petersburg, Russia, 2005.
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The energy balance equation in classics has the following form:

ρU̇ = τ · ·ε̇ + E · Ḋ, (3)

The electric enthalpy density is expressed by

F = U − E · D. (4)

For the linear approximation the following biquadratic form is employed:

ρF = ρF0 +
1

2
ε · ·C · ·ε − E · M · ·ε −

1

2
E · ε · E. (5)

Constitutive equations are expressed by:

τ = C · ·ε − E · M, (6)

D = M · ·ε + ε · E, (7)

where E is the vector electric field intensity in medium, ε is the tensor of linear deformation, C is
the tensor of elasticity, M is the tensor of piezoelectricity, ε is the tensor of dielectric permittivity.

This notation uses displacements and electric field as independent variables. The other no-
tation assumes, that independent variables are displacements and electric displacement. This
notation of classical theory uses the intrinsic energy instead of the electric enthalpy. When equa-
tion

ρU = ρU0 +
1

2
ε · ·C(c) · ·ε + D · M(c) · ·ε +

1

2
D · ε(c) · D, (8)

is used, then the constitutive equations are expressed by equations:

τ = C(c) · ·ε + D · M(c), (9)

E = M(c) · ·ε + ε(c) · D. (10)

2 Particle model

In the present work we present a micro-polar theory for mediums with non-zero electric dipole
momentum density. Such a materials possesses piezoelectric properties, i.e. the electric field
influence on the mechanical state of medium. In order to write equations for piezoelectric media,
we have presented the particle model of such media. We use lagrangian description.

Let the particles be point bodies with dipole properties. The particles have abilities to move
in space and rotate. Let the particle have the ability to change the value of dipole as well, i.e. the
particle is elastic point-body. Let the particle with dipole value d0 in the reference configuration
be characterized by following parameters: R+

0 and R−
0 are the vectors of charges q+ and q−,

respectively (q+ = −q− = q are the charge values); r0 is the radius of geometrical center of the
particle.

Let in the actual configuration charges q± be moved from points R±
0 to points R±. Respec-

tively, the center of particle is moved to the point r. Let us introduce the following notations:

u = r − r0, (11)
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Figure 1: Point-body as a couple of charges

u+ = R+ − R+
0 , (12)

u− = R− − R−
0 . (13)

d0 = ql0 = q(R+
0 − R−

0 ), (14)

d = ql = q(R+ − R−), (15)

Let θ(|θ| 
 1) be the turn of the vector d0 to d. Let p ≡ d − d0 be the change in dipole state.
Let δ be the relative dipole value change

|d| = |d0|(1 + δ). (16)

After certain transformations for p we have decomposition

p � p1 + p2, (17)

where
p1 = δd0, p2 = (1 + δ)θ × d0. (18)

Let us define the piezoelectric polarization density of continuum as

Pp = lim
∆V→0

∑
k∈∆V (p1k + p2k)

∆V
= Pp

1 + Pp

2 , (19)

where
Pp

1 = δPs
, Pp

2 = (1 + δ)θ × Ps
, (20)

where Ps is the density of spontaneous polarization.
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The polarization vector Pp is the sum of two orthogonal polarization vectors of different
nature: the first one is associated with rotation of medium particle, the second one is associated
with changing of its absolute value.

Let us now write the power, given to the point-body by effective electric field. For this
purpose we use the Lorentz formulae and Poisson equation. Finally, after transformations we
have:

ė = (∇ · E)d0 · u̇ + E · ṗ. (21)

Using equations (18), let us write the time derivative of the vector (17):

ṗ = δ̇(d0 + θ × d0) + (1 + δ)θ̇ × d0 � δ̇d0 + θ̇ × d0. (22)

Now, the equation for medium may be written:

Ė = (∇ · E)Ps · u̇ + (1 + δ)(Ps × E) · θ̇ + (Ps · E)δ̇. (23)

3 The Laws of motion

Kinetic energy for the point body with inertia tensor J is represented in the form:

K =
1

2
mu̇2 +

1

2
ω · Q(t) · J · Q(t)T · ω. (24)

The density of momentum:

K1 =
∂K
∂u̇

= ρu̇,

where ρ = V−1
∑
V

mi is the mass density, V is material volume. The equation of momentum

balance is expressed by

d

dt

∫
V

K1dV =
d

dt

∫
V

ρu̇dV =

∫
V

ρFdV +

∫
S

T(n)dS, (25)

where F is external force density, T(n) is stress vector. The following formulae is true:

T(n) = n · T, (26)

where n is normal vector, T is Cauchy stress tensor. Let us apply Green theorem∫
S

T(n)dS =

∫
S

n · TdS =

∫
V

∇ · TdV

and, taking into account (26), the equation (25) become∫
V

[ρü − ρF − ∇ · T] dV = 0. (27)

The momentum balance equation:

∇ · T + ρF = ρü. (28)
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The other form of this equation is expressed by

∇ · τ −
1

2
∇ × q + ρF = ρü, (29)

where τ = 1
2
(T + TT ), and q = T×.

For turn-tensor Q it is possible to write the following approximation:

Q ≈ I + φ × I, φ = φeφ. (30)

Using Poisson equation
Q̇ = ω × Q, (31)

the expression for angular velocity follows:

ω = φ̇.

For small ω, the equation for kinetic momentum is expressed by:

K2 = r × K1 +
∂K
∂φ̇

= ρ(r × u̇ + J · φ̇(x, t)). (32)

Integral form of the second Law of dynamics is as follows:

d

dt

∫
V

K2dV =

∫
V

ρ (r × F + L)dV +

∫
S

(
r × T(n) + µ(n)

)
dS, (33)

where L is the external momentum, µ(n) is the momentum stress tensor. The Cauchy equation
for µ is:

µ(n) = n · µ. (34)

The local form of the second Law is expressed by:

∇ · µ + q + ρL = ρJ · φ̈. (35)

Let us suppose
µ = m × I. (36)

This is not the only available representation, but it is not so important today to specify it more
precisely. Finally we have the following equation:

∇ × m + q + ρL = ρJ · φ̈. (37)

The integral form of the energy balance equation is expressed by:

d

dt

∫
V

(
1

2
ρu̇2 +

1

2
ρφ̇ · J · φ̇ + ρU

)
dV =

∫
V

(
ρF · u̇ + ρL · φ̇ + Q

)
dV +

+

∫
S

(
T(n) · u̇ + µ(n) · φ̇ + H · n

)
dS, (38)

where H is energy flow vector, Q is density of external energy supply sources. Generally, Q

represent the energy dissipation.
The local form of energy balance equation is represented as follows:

ρU̇ = τ · ·ε̇ − q · θ̇ − m · γ̇ + ∇ · H + Q. (39)

where

ε ≡ 1

2

(∇u + ∇uT
)
, θ ≡ φ −

1

2
∇ × u, γ = ∇ × φ. (40)
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4 Equations of piezoelectric medium.

Let electric field be the only external influence. Then, from equation (23), we can obtain:

ρF = (∇ · E)Ps, (41)

ρL = (1 + δ)Ps × E. (42)

The last term in equation (23) comes directly to the intrinsic energy equation.

Q = (Ps · E)δ̇. (43)

Let us introduce two scalars: the temperature T and the entropy S. Let that values satisfy the
following equation:

TṠ = ∇ · H + Qi, (44)

where Qi represent the work of dissipative forces

Qi = τi(ε, ε̇) · ·ε̇ − qi(θ, θ̇) · θ̇ − mi(γ, γ̇) · γ̇. (45)

For heat flow vector H it is possible to write equation:

H = −χ∇T. (46)

The equation for intrinsic energy may be rewritten:

ρU̇ = τ · ·ε̇ − q · θ̇ − m · γ̇ + (E · Ps)δ̇ + TṠ. (47)

Let us assume the hypothesis of natural state and represent the intrinsic energy as positively
defined bilinear quadratic form:

ρU = ρU0 +
1

2
ε · ·C(ε) · ·ε +

1

2
θ · C(θ) · θ +

1

2
γ · C(γ) · γ +

1

2
C(δ)δ2 +

1

2
C(S)S2+

+ θ · C(θε) · ·ε + γ · C(γε) · ·ε + δC(δε) · ·ε + SC(Sε) · ·ε+

+ γ · C(γθ) · θ + δC(δθ) · θ + SC(Sθ) · θ+

+ δC(δγ) · γ + SC(Sγ) · γ + C(δS)δS. (48)

Then, it is possible to write Cauchy-Green relations:

τ =
∂ρU

∂ε
= C(ε) · ·ε + θ · C(θε) + γ · C(γε) + C(δε)δ + C(Sε)S, (49)

−q =
∂ρU

∂θ
= C(θε) · ·ε + C(θ) · θ + γ · C(γθ) + C(δθ)δ + C(Sθ)S, (50)

−m =
∂ρU

∂γ
= C(γε) · ·ε + C(γθ) · θ + C(γ) · γ + C(δγ)δ + C(Sγ)S, (51)

E · Ps =
∂ρU

∂δ
= C(δε) · ·ε + C(δθ) · θ + C(δγ) · γ + C(δ)δ + C(δS)S, (52)
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T =
∂ρU

∂S
= C(Sε) · ·ε + C(Sθ) · θ + C(Sγ) · γ + C(δS)δ + C(S)S. (53)

The equation of motion are as follows:

∇ · τ −
1

2
∇ × q + (∇ · E)Ps = ρü, (54)

∇ × m + q + (1 + δ)Ps × E = ρJ · φ̈, (55)

−χ∇2T + Qi = TṠ. (56)

5 Micropolar theory: transformation to classical form

In order to compare the set of equations described above with equations of classical theory, let us
try to make some assumptions and simplify the micropolar theory. Let us rewrite equation (19),
taking into account (20), and suppose δ 
 1:

Pp = δPs + θ × Ps. (57)

From this equation it is obvious, that for known δ and θ it is possible to find P p. Reverse task
has no single solution. Let us suppose θ · P s = 0. Then, from (57) it is possible to write:

θ =
Ps × Pp

|Ps|2
= χs × Pp

, (58)

δ =
Ps · Pp

|Ps|2
= χs · Pp. (59)

where χs = Ps
/|Ps|2. Assume, that φ = 0 (this assumption is valid for crystalline structures)

and neglect the temperature effects. Equation (55) rewrite as follows:

q = −Ps × E. (60)

Then, relations (49)–(52) become:

τ = C(ε) · ·ε + Pp · (−χs × C(θε) + χs ⊗ C(δε)), (61)

Ps × E = C(θε) · ·ε + (C(θ) × χs + C(δθ) ⊗ χs) · Pp, (62)

Ps · E = C(δε) · ·ε + (C(δθ) × χs + C(δ) ⊗ χs) · Pp
, (63)

From equations (62) and (63) it follows the expression for E:

E = (−χs × C(θε) + χs ⊗ C(δε)) · ·ε +

+ (−χs × C(θ) × χs + χs ⊗ C(δθ) × χs − χs × C(δθ) ⊗ χs + C(δ)χs ⊗ χs) · Pp
.
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Terms χs ⊗C(δθ) ×χs = 0 and χs ×C(δθ) ⊗χs = 0. This is obvious from the symmetry of the
system: either the vectors χs and C(δθ) must be collinear at the given point of medium or vector
C(δθ) = 0 due to structure’s symmetry.

Thus, we obtain the system of equations

τ = C(n) · ·ε + Pp · M(n), (64)

E = M(n) · ·ε + ε(n) · Pp
. (65)

The following notations are used:
C(n) = C(ε), (66)

M(n) = χs ⊗ C(δε) − χs × C(θε), (67)

ε(n) = C(δ)χs ⊗ χs − χs × C(θ) × χs. (68)

The obtained equations (64)–(65) have similar shape compared to equations of classical theory
(9)–(10). Moreover, comparison of the shape of mentioned material tensor with material ten-
sors of classical theory shows the identical non-zero components placement, i.e. these material
tensors are equivalent.

6 The system of equations for two-dimensional layer.

Let us consider the layer, made from material with two orthogonal planes of symmetry. Let
thickness be along e3 direction. Then, for displacements we have equations:

u = u1(x1, x3)e1 + u3(x1, x3)e3, φ = φ2(x1, x3)e2. (69)

Let the spontaneous polarization and electric field be along the e 3 axis:

P(s) = P(s)e3, E = E3(x1, x3)e3. (70)

The form of material tensors must be obtained, using the theory of symmetry. In order to simplify
equations, here and further we will express δ from equation (52) and substitute it into equations
(49), (50) and (51). Also, we will neglect temperature effects for the same reason. After trans-
formations, the following system of 3 differential equations of the second order is obtained:

C11

∂2u1

∂x2
1

+ C12

∂2u1

∂x2
3

+ C13

∂2u3

∂x1∂x3

+ C14

∂2φ2

∂x2
1

+ C15

∂φ2

∂x3

+ C16

∂2φ2

∂x2
3

+

+ C17P(s) ∂E3

∂x1

= ρ
∂2u1

∂t2
, (71)

C21

∂2u3

∂x2
1

+C22

∂2u3

∂x2
3

+C23

∂2u1

∂x1∂x3

+C24

∂φ2

∂x1

+C25

∂2φ2

∂x1∂x3

+C26P(s) ∂E3

∂x3

= ρ
∂2u3

∂t2
, (72)

C31

∂u1

∂x3

+ C32

∂u3

∂x1

+ C33

∂2u1

∂x2
1

+ C34

∂2u1

∂x2
3

+ C35

∂2u3

∂x1∂x3

+ C36

∂2φ2

∂x2
1

+ C37

∂2φ2

∂x2
3

+

+ C38P(s) ∂E3

∂x1

− C
(θ)
2 φ2 = ρ2

∂2φ2

∂t2
, (73)
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where the following notations are used:

C11 = C
(ε)
11 −

(C
(δε)
1

)2

C(δ) , C12 = C
(ε)
55 −C

(θε)
25 + 1

4
C

(θ)
2 , C13 = C

(ε)
13 +C

(ε)
55 −

C
(δε)
1

C
(δε)
3

C(δ) − 1

4
C

(θ)
2 ,

C14 = C
(γε)
31 −

C
(δε)
1

C
(δγ)
3

C(δ) , C15 = C
(θε)
25 − 1

2
C

(θ)
2 , C16 = 1

2
C

(γθ)
6 − C

(γε)
15 , C17 =

C
(δε)
1

C(δ) ,

C21 = C
(ε)
55 +C

(θε)
25 + 1

4
C

(θ)
2 , C22 = C

(ε)
33 −

(C
(δε)
3

)2

C(δ) , C23 = C
(ε)
13 +C

(ε)
55 −

C
(δε)
1

C
(δε)
3

C(δ) − 1

4
C

(θ)
2 ,

C24 = C
(θε)
25 + 1

2
C

(θ)
2 , C25 = C

(γε)
33 − C

(γε)
15 − 1

2
C

(γθ)
6 −

C
(δγ)
3

C
(δε)
3

C(δ) , C26 =
C

(δε)
3

C(δ) ,

C31 = 1

2
C

(θ)
2 − C

(θε)
25 , C32 = − 1

2
C

(θ)
2 − C

(θε)
25 , C33 = C

(γε)
31 −

C
(δγ)
3

C
(δε)
1

C(δ) ,

C34 = 1

2
C

(γθ)
6 − C

(γε)
15 , C35 = C

(γε)
33 − C

(γε)
15 − 1

2
C

(γθ)
6 −

C
(δγ)
3

C
(δε)
3

C(δ) = C25 ,

C36 = C
(γ)
3 −

(C
(δγ)
3

)2

C(δ) , C37 = C
(γ)
1 , C38 =

C
(δγ)
3

C(δ) , ρ2 = ρJ2.

Let us perform similar manipulation for the set of classical equations (1), (2), (6) and (7).
After transformations the system looks as follows:

C
(ε)
11

∂2u1

∂x2
1

+ C
(ε)
55

∂2u1

∂x2
3

+ (C
(ε)
13 + C

(ε)
55 )

∂2u3

∂x1∂x3

− M15

∂E1

∂x3

− M31

∂E3

∂x1

= ρ
∂2u1

∂t2
, (74)

C
(ε)
55

∂2u3

∂x2
1

+ C
(ε)
33

∂2u3

∂x2
3

+ (C
(ε)
13 + C

(ε)
55 )

∂2u1

∂x1∂x3

− M15

∂E1

∂x1

− M33

∂E3

∂x3

= ρ
∂2u3

∂t2
, (75)

M15

∂2u3

∂x2
1

+ M33

∂2u3

∂x2
3

+ (M15 + M31)
∂2u1

∂x1∂x3

+ ε1

∂E1

∂x1

+ ε3

∂E3

∂x3

= 0. (76)

Now let us consider another two-dimensional case. Let material be as in the previous case,
with two orthogonal planes of symmetry. Let thickness be along e 3 direction. Then, for displace-
ments we have equations:

u = u1(x1, x3)e1 + u3(x1, x3)e3, φ = φ2(x1, x3)e2. (77)

Let the spontaneous polarization be along the e1 direction and electric field is parallel to the
thickness direction:

P(s) = P(s)e1, E = E3(x1, x3)e3.

Similarly to (71)–(73), the following system of equation is obtained:

C11

∂2u1

∂x2
1

+ C12

∂2u1

∂x2
3

+ C13

∂2u3

∂x1∂x3

+ C14

∂2φ2

∂x2
1

+ C15

∂φ2

∂x3

+ C16

∂2φ2

∂x2
3

= 0, (78)

C21

∂2u3

∂x2
1

+ C22

∂2u3

∂x2
3

+ C23

∂2u1

∂x1∂x3

+ C24

∂φ2

∂x1

+ C25

∂2φ2

∂x1∂x3

= 0, (79)
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C31

∂u1

∂x3

+ C32

∂u3

∂x1

+ C33

∂2u1

∂x2
1

+ C34

∂2u1

∂x2
3

+ C35

∂2u3

∂x1∂x3

+ C36

∂2φ2

∂x2
1

+ C37

∂2φ2

∂x2
3

+

+

(
C

(δε)
1

∂u1

∂x1

+ C
(δε)
3

∂u3

∂x3

+ C
(δγ)
3

∂φ2

∂x1

)
P(s)

C(δ)
E3 − P(s)E3 − C

(θ)
2 φ2 = 0. (80)

Equations (78)–(80) differs from equations (71)–(73) by the presence of terms, proportional to
electric field in equation (80). This situation occurs due to the geometry of the case: spontaneous
dipole momentum is perpendicular to electric field direction. The set of classical equations is
written as follows:

C
(ε)
11

∂2u1

∂x2
1

+ C
(ε)
55

∂2u1

∂x2
3

+ (C
(ε)
13 + C

(ε)
55 )

∂2u3

∂x1∂x3

− M31

∂E3

∂x1

= ρ
∂2u1

∂t2
, (81)

C
(ε)
55

∂2u3

∂x2
1

+ C
(ε)
33

∂2u3

∂x2
3

+ (C
(ε)
13 + C

(ε)
55 )

∂2u1

∂x1∂x3

− M33

∂E3

∂x3

= ρ
∂2u3

∂t2
, (82)

M15

∂2u3

∂x2
1

+ M33

∂2u3

∂x2
3

+ (M15 + M31)
∂2u1

∂x1∂x3

+ ε3

∂E3

∂x3

= 0. (83)

The comparison of two systems of equations (78)–(80) and (81)–(83) shows significant dif-
ference of two theories. In the classical theory electric field comes into equations only via its
derivatives, while in the micro-polar theory we find linear terms.

The obtained equations are rather complicated. Meanwhile, it is possible to reduce number
of independent variables by using assumption for Cosserat medium (φ = 0). From this point of
view we are going to consider the following, easy case.

7 The solution for one-dimensional static case.

Let us consider the infinite plate in electric field. Let the material, from which the plate is made
of, have two mirror planes of symmetry, crossed by e 3 axis. This symmetry group is named
mm2 and it represent such materials as LiGaO2 and Li2GeO3. One of the planes of the mirror
symmetry is parallel to the plane of the plate. Let spontaneous polarization lay in the same
direction and electric field is parallel to the thickness along n = e2 axis:

P(s) = P(s)e3, E = E2e2.

The only independent variable is x2. From equations (54)–(55), after transformations, it
follows: (

C
(ε)
22 −

(C
(δε)
2 )2

C(δ)

)
∂2u2

∂x2
2

= 0, (84)

(
4C

(ε)
44 − 4C

(θε)
14 + C

(θ)
1

) ∂2u3

∂x2
2

= 0, (85)

(
1

2
C

(θ)
1 − C

(θε)
14

)
∂u3

∂x2

+

(
C

(δε)
2 C

(δγ)
3

C(δ)
− C

(γε)
32

)
∂2u2

∂x2
2

= P(s)E2. (86)
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Figure 2: one-dimensional case

Choose the boundary conditions as follows:

x2 = ±h/2 : n · τ · n = 0, (87)

and
x2 = 0 : u2 = 0, u3 = 0. (88)

After transformations, (87) becomes:

x2 = ±h/2 :
∂u2

∂x2

= 0. (89)

Using (88), for u2 we have:
u2(x2) = 0. (90)

From (86) and (88) the solution for u3 follows:

u3(x2) = P(s)E2x2

/(
1
2
C

(θ)
1 − C

(θε)
14

)
. (91)

7.1 The solution for one-dimensional classical case.

Let us consider equations (6)–(7). We will use here electric potential ϕ instead of electric field
E = −∇ϕ. The system of equations in this case can be expressed by:

∂2u2

∂x2
2

= 0, C44

∂2u3

∂x2
2

+ M24

∂2ϕ

∂x2
2

= 0, M24

∂2u3

∂x2
2

− ε2

∂2ϕ

∂x2
2

= 0. (92)

The boundary conditions:

x2 = ±h/2 : n · τ · n = 0, n · D = n · D0,

x2 = 0 : u2 = 0, u3 = 0, ϕ = 0,

where D0 = ε0E, ε0 is the dielectric permittivity of vacuum. The boundary conditions are as
follows:

∂u2

∂x2

= 0, C44

∂u3

∂x2

+ M24

∂ϕ

∂x2

= 0, M24

∂u3

∂x2

− ε2

∂ϕ

∂x2

= E2.

The solution of this system is as follows:

u2 = 0, u3 =
M24

M2
24 + C44ε2

E2x2, ϕ = −
C44

M2
24 + C44ε2

E2x2. (93)

The solution for displacement u (90)–(91) and the solution (93) differs by constant multiplier.
Both solutions contain material constants, but in the first case that constants are not yet known.
Thus, the solutions seems to be equivalent.
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8 Conclusion.

The micropolar theory of piezoelectricity has some important advantages compared to the classi-
cal one. Considered theory clearly shows the way how electric field influence on matter. There is
possibility to consider inhomogeneous mediums by setting P s(r) field. The micropolar theory
allow to consider more general cases then classical one, adding new degrees of freedom. There
is possibility to greatly simplify the micropolar theory by neglecting rotational degrees of free-
dom. Even after that simplification theory remains unsymmetrical and, thus, generally different
compared to classic one. Meanwhile, unsymmetrical linear theory may lead to similar material
tensor shapes and solutions, obtained by both theories.
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